Solveeit Logo

Question

Physics Question on Dimensional Analysis

The dimensions of torque are same as that of

A

moment of force

B

pressure

C

acceleration

D

impulse

Answer

moment of force

Explanation

Solution

Torque is expressed as,
τ=\tau= force (F)×(F) \times perpendicular distance (r)(r)
So, [τ]=[F]×[r]=[MLT2][L][\tau] =[F] \times[r]=\left[ MLT ^{-2}\right][ L]
=[ML2T2]=\left[ ML ^{2} T ^{-2}\right]
Now, the dimension of moment of force ++ force ×\times distance
=[MLT2]×[L1]=[ML2T2].= \left[M L T^{-2}\right] \times\left[L^{1}\right]=\left[M L^{2} T^{-2}\right].
(b) Dimension of pressure == Force ×[ Area ]2\times[\text { Area }]^{-2}
=[MLT2]×[L2]=[ML1T2]=\left[ MLT ^{-2}\right] \times\left[ L ^{-2}\right]=\left[ ML ^{-1} T ^{-2}\right]
(c) Dimension of acceleration =[M0L1T2]=\left[ M ^{0} L ^{1} T ^{-2}\right]
(d) Dimension of impulse == [Force] xx [time]
=[MLT2][T1]=MLT1=\left[M L T^{-2}\right]\left[T^{1}\right]=M L T^{-1}
As, the torque has dimension [ML2T2],\left[ ML ^{2} T ^{-2}\right],
which is correctly matched by the dimensions of moment of force.
So, option (a) is correct.