Solveeit Logo

Question

Physics Question on Dimensional Analysis

The dimensions of Planck constant equals to that of

A

energy

B

momentum

C

angular momentum

D

power

Answer

angular momentum

Explanation

Solution

Dimensions of Planck constant h=EnergyFrequencyh=\frac{\text{Energy}}{\text{Frequency}}
=[ML2T2][T1]=\frac{[ML^2T^{-2}]}{[T^{-1}]}
=[ML2T1]=[ML^2T^{-1}]
Dimensions of angular momentum LL
= Moment of inertia I×I \times Angular velocity ω\omega
=[ML2][T1]=[ML^2][T^{-1}]
=[ML2T1]=[ML^2T^{-1}]