Solveeit Logo

Question

Question: The dimensions of \(\frac{e^{2}}{4\pi\varepsilon_{0}hc}\), where e, ε<sub>0</sub>, h and c are elect...

The dimensions of e24πε0hc\frac{e^{2}}{4\pi\varepsilon_{0}hc}, where e, ε0, h and c are electronic charge, electric permittivity, Planck’s constant and velocity of light in vacuum respectively is –

A

[M0 L0 T0]\lbrack M^{0}\text{ }\text{L}^{0}\text{ }\text{T}^{0}\rbrack

B

[M1 L0 T0]\lbrack M^{1}\text{ }\text{L}^{0}\text{ }\text{T}^{0}\rbrack

C

[M0 L1 T0]

D

[M0 L0 T1]\lbrack M^{0}\text{ }\text{L}^{0}\text{ }\text{T}^{1}\rbrack

Answer

[M0 L0 T0]\lbrack M^{0}\text{ }\text{L}^{0}\text{ }\text{T}^{0}\rbrack

Explanation

Solution

e24πε0hc\frac{e^{2}}{4\pi\varepsilon_{0}hc}

[kq2r2\frac{kq^{2}}{r^{2}} = F ⇒ ke2 = Fr2

Energy E = hcλ\frac{hc}{\lambda} ⇒ hc = Eλ]

Fr2hc=Fr2Eλ\frac{Fr^{2}}{hc} = \frac{Fr^{2}}{E\lambda}= [M0L0T0]