Solveeit Logo

Question

Physics Question on mechanical properties of solids

The dimensions of four wires of the same material are given below. In which wire the increase in length will be maximum when the same tension is applied?

A

Length 100 cm, diameter 1 mm

B

Length 200 cm, diameter 2 mm

C

Length 300 cm, diameter 3 mm

D

Length 50 cm, diameter 0.5 mm

Answer

Length 50 cm, diameter 0.5 mm

Explanation

Solution

As , Y=FAlL=F×Lπr2×lY =\frac{\frac{F}{A}}{\frac{l}{L}} = \frac{F \times L}{\pi r^{2}\times l}
l=F×Lπr2×Yl = \frac{F\times L}{\pi r^{2}\times Y}
For given FF and Y,lLr2LD2Y, l \propto \frac{L}{r^2} \propto \frac{L}{D^2}
l1:l2:l3:l4=L1D12:L2D22:L3D32:L4D42\therefore \:\:\:\: l_{1}:l_{2}:l_{3}:l_{4} = \frac{L_{1}}{D_{1}^{2}} : \frac{L_{2}}{D_{2}^{2}} : \frac{L_{3}}{D_{3}^{2}} : \frac{L_{4}}{D_{4}^{2}}
L1D12=100cm(1mmm)2,L2D22=2000cm(2mmm)2,L3D32=300cm(3mmm)2,L4D42=50cm(0.5mmm)2\frac{L_{1}}{D_{1}^{2}}= {\frac{100 \, cm}{(1 mmm)^2}}, \frac{L_{2}}{D_{2}^{2}} = {\frac{2000 \, cm}{(2 mmm)^2}}, \frac{L_{3}}{D_{3}^{2}} = {\frac{300 \, cm}{(3 mmm)^2}} , \frac{L_{4}}{D_{4}^{2}} = {\frac{50 \, cm}{(0.5 mmm)^2}}
So, l1:l2:l3:l4=1:12:13:2 l_{1}:l_{2}:l_{3}:l_{4} = 1 : \frac{1}{2} : \frac{1}{3} : 2
Clearly l4l_4 is maximum. So correct option is (d) ..