Solveeit Logo

Question

Question: The dimensions of σb<sup>4</sup> (σ = Stefan's constant and b = Wein's constant) are –...

The dimensions of σb4 (σ = Stefan's constant and b = Wein's constant) are –

A

[M0L0T0]\lbrack M^{0}L^{0}T^{0}\rbrack

B

[ML4T-3]\lbrack\text{M}\text{L}^{4}T^{\text{-3}}\rbrack

C

[ML-2T]\lbrack\text{M}\text{L}^{\text{-2}}T\rbrack

D

[ML6T-3]\lbrack\text{ML6}\text{T}^{\text{-3}}\rbrack

Answer

[ML4T-3]\lbrack\text{M}\text{L}^{4}T^{\text{-3}}\rbrack

Explanation

Solution

λmT=b\mathbf{\lambda}_{\mathbf{m}}\mathbf{T = b}or b4=λm4T4b^{4} = \lambda_{m}^{4}T^{4} and energyareatime=σT4\frac{energy}{area - time} = \sigma T^{4}

or σ=energy(areatime)T4\sigma = \frac{energy}{(area - time)T^{4}}

∴ σb4=(energyareatime)λm4\sigma b^{4} = \left( \frac{energy}{area - time} \right)\lambda_{m}^{4}

or =[σb4][ML2T2][L2][T][L4] = [ML4T-3]\left\lbrack \sigma b^{4} \right\rbrack\frac{\lbrack ML^{2}T^{- 2}\rbrack}{\lbrack L^{2}\rbrack\lbrack T\rbrack}\lbrack L^{4}\rbrack\ = \ \lbrack\text{M}\text{L}^{4}T^{\text{-3}}\rbrack