Solveeit Logo

Question

Question: The dimensional formula for Planck’s constant and angular momentum are, A. \(\left[ \text{M}{{\tex...

The dimensional formula for Planck’s constant and angular momentum are,
A. [ML2T-2] and [MLT-1]\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}} \right]\text{ and }\left[ \text{ML}{{\text{T}}^{\text{-1}}} \right]
B. [ML2T-1] and [C.ML2T-1]\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-1}}} \right]\text{ and }\left[ C. \text{M}{{\text{L}}^{2}}{{\text{T}}^{\text{-1}}} \right]
C. [ML3T1] and [ML2T-2]\left[ \text{M}{{\text{L}}^{3}}{{\text{T}}^{1}} \right]\text{ and }\left[ \text{M}{{\text{L}}^{2}}{{\text{T}}^{\text{-2}}} \right]
D. [MLT-1] and [MLT-2]\left[ \text{ML}{{\text{T}}^{\text{-1}}} \right]\text{ and }\left[ \text{ML}{{\text{T}}^{\text{-2}}} \right]

Explanation

Solution

Hint: Think about how the Planck’s constant is related to energy and frequency and how angular momentum is related to moment of inertia and angular velocity.

Complete step by step answer:
The energy radiated by an electromagnetic wave for example light at a particular frequency !!ν!! )\text{( }\\!\\!\nu\\!\\!\text{ )} is given by E=!!ν!! \text{E}=\text{h }\\!\\!\nu\\!\\!\text{ }, so the Planck constant can be expressed as the ratio of energy and frequency, h=E/ !!ν!! \text{h}=\text{E/ }\\!\\!\nu\\!\\!\text{ }. The dimensional formula associated with energy is [ML2T-2]\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}} \right] and the dimensional formula for frequency is [T-1]\left[ {{\text{T}}^{\text{-1}}} \right].
So the dimensional formula for Planck’s constant can be derived from these,
h=[ML2T-2][T-1]=[ML2T-1]h=\dfrac{\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}} \right]}{\left[ {{\text{T}}^{\text{-1}}} \right]}=\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-1}}} \right]
So the dimensional formula for Planck’s constant is [ML2T-1]\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-1}}} \right].
The angular momentum of a body whose moment of inertia is I and angular velocity  !!ω!! \text{ }\\!\\!\omega\\!\\!\text{ } is given by the formula L=!!ω!! \text{L}=\text{I }\\!\\!\omega\\!\\!\text{ }, The dimensional formula for moment of inertia is given by [ML2]\left[ \text{M}{{\text{L}}^{\text{2}}} \right] and the dimensional formula for angular velocity is [T-1]\left[ {{\text{T}}^{\text{-1}}} \right] so the dimensional formula for angular momentum is the product of these two dimensional formulas,
L=[ML2][T-1]=[ML2T-1]\text{L}=\left[ \text{M}{{\text{L}}^{\text{2}}} \right]\left[ {{\text{T}}^{\text{-1}}} \right]=\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-1}}} \right]
So the dimensional formula for angular momentum is [ML2T-1]\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-1}}} \right].
So considering the dimensional formulas we got for Planck’s constant and angular momentum, the answer to our question will be option (B)- [ML2T-1]\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-1}}} \right] and [ML2T-1]\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-1}}} \right].
As you can see that the dimensional formula for both the quantities are same.

Note: The angular momentum can also be expressed as the product of a body of mass m, its linear velocity and the distance r from the axis. L=mvr\text{L}=\text{mvr}.
[ML2T-2]\left[ \text{M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}} \right] is the dimensional formula for Energy.
[MLT-2]\left[ \text{ML}{{\text{T}}^{\text{-2}}} \right] is the dimensional formula for force.
[MLT-1]\left[ \text{ML}{{\text{T}}^{\text{-1}}} \right] is the dimensional formula for momentum.