Solveeit Logo

Question

Physics Question on Dimensional Analysis

The dimensional formula for acceleration, velocity and length are a?2,a?1a?^{-2}, \,a?^{-1} and αγ\alpha\gamma. What is the dimensional formula for the coefficient of friction ?

A

αβγ\alpha\beta\gamma

B

α1β0γ0\alpha^{-1}\beta^0\gamma^0

C

α0β1γ0\alpha^0\beta^{-1}\gamma^0

D

α0β0γ1\alpha^0\beta^0\gamma^{-1}

Answer

α0β0γ1\alpha^0\beta^0\gamma^{-1}

Explanation

Solution

Here, [a]=LT2=(a?2)\left[a\right] = LT^{-2 }=\left(a?^{-2}\right) [υ]=LT1=a?1\left[\upsilon\right] = LT^{-1} = a?^{-1} a=L,?=T\therefore\quad a = L, ? = T [L]=aγ\left[L\right] = a\gamma γ=[L]α=LL=1\therefore\quad\gamma = \frac{\left[L\right]}{\alpha} = \frac{L}{L} = 1 Coefficient of friction, μ=FR=M0L0T0\mu = \frac{F}{R} =M^{0}L^{0}T^{0} i.e. dimensionless Now, α0β0γ1=L0T0(1)1=1\alpha^{0}\beta^{0}\gamma^{-1} = L^{0}T^{0}\left(1\right)^{-1} = 1, which is dimensionless.