Solveeit Logo

Question

Physics Question on Units and measurement

The dimension of Pa\frac{P}{a} in the equation p=bt2axp=\frac{b-{{t}^{2}}}{ax} where p is pressure, xx is distance and t is time are

A

[MLT2][ML{{T}^{-2}}]

B

[MT2][M{{T}^{-2}}]

C

[ML3T2][M{{L}^{3}}{{T}^{-2}}]

D

[LT3][L{{T}^{-3}}]

Answer

[MT2][M{{T}^{-2}}]

Explanation

Solution

p=bt2axp=\frac{b-{{t}^{2}}}{ax} or pax=bt2pax=b-{{t}^{2}} [pax]=[b]=[T2][pax]=[b]=[{{T}^{2}}] [a]=[T2][p][x][a]=\frac{[{{T}^{2}}]}{[p][x]} =[T2][ML1T2][L]=\frac{[{{T}^{2}}]}{[M{{L}^{-1}}{{T}^{-2}}][L]} [a]=[M1T4][a]=[{{M}^{-1}}{{T}^{4}}] [ba]=[T2][M1T4]\left[ \frac{b}{a} \right]=\frac{[{{T}^{2}}]}{[{{M}^{-1}}{{T}^{4}}]} =[MT2]=[M{{T}^{-2}}]