Solveeit Logo

Question

Question: The dimension of electromotive in terms of Current A are A. \[\text{ }\\!\\![\\!\\!\text{ M}{{\tex...

The dimension of electromotive in terms of Current A are
A.  !![!! MT-2A-2 !!]!! \text{ }\\!\\![\\!\\!\text{ M}{{\text{T}}^{\text{-2}}}{{\text{A}}^{\text{-2}}}\text{ }\\!\\!]\\!\\!\text{ }
B.  !![!! ML2T-2A2 !!]!! \text{ }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}}{{\text{A}}^{\text{2}}}\text{ }\\!\\!]\\!\\!\text{ }
C.  !![!! ML2T-2A-2 !!]!! \text{ }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}}{{\text{A}}^{\text{-2}}}\text{ }\\!\\!]\\!\\!\text{ }
D.  !![!! ML2T-3A-1 !!]!! \text{ }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-3}}}{{\text{A}}^{\text{-1}}}\text{ }\\!\\!]\\!\\!\text{ }

Explanation

Solution

Hint: The formula of electromotive force is work done on the charge per unit charge that is
EMF=workcharge\text{EMF=}\dfrac{\text{work}}{\text{charge}}
Using the formula dimensions can be measured.

Complete step-by-step answer:
Given to find the dimension of electromotive force
The formula to find Electromotive force is
EMF=workcharge\text{EMF=}\dfrac{\text{work}}{\text{charge}} ….. 1
Where
EMF = Electromotive force
Work done on the charge
The formula for work is
Work = force displacement
Work = mass acceleration displacement
Dimension of mass =  !![!! M !!]!! \text{ }\\!\\![\\!\\!\text{ M }\\!\\!]\\!\\!\text{ }
Acceleration =  !![!! LT-2 !!]!! \text{ }\\!\\![\\!\\!\text{ L}{{\text{T}}^{\text{-2}}}\text{ }\\!\\!]\\!\\!\text{ }
Since acceleration = m/s2\text{m/}{{\text{s}}^{\text{2}}}
Displacement =  !![!! L !!]!! \text{ }\\!\\![\\!\\!\text{ L }\\!\\!]\\!\\!\text{ }
Therefore dimension of work
Work =  !![!! M !!]!! !![!! LT-2 !!]!! !![!! L !!]!! = !![!! ML2T-2 !!]!! \text{ }\\!\\![\\!\\!\text{ M }\\!\\!]\\!\\!\text{ }\\!\\![\\!\\!\text{ L}{{\text{T}}^{\text{-2}}}\text{ }\\!\\!]\\!\\!\text{ }\\!\\![\\!\\!\text{ L }\\!\\!]\\!\\!\text{ = }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}}\text{ }\\!\\!]\\!\\!\text{ }
Formula for charge = Current ×\times Time
Dimension of
Current =  !![!! A !!]!! \text{ }\\!\\![\\!\\!\text{ A }\\!\\!]\\!\\!\text{ }
Time =  !![!! T !!]!! \text{ }\\!\\![\\!\\!\text{ T }\\!\\!]\\!\\!\text{ }
Therefore dimension of charge= !![!! AT !!]!! \text{ }\\!\\![\\!\\!\text{ AT }\\!\\!]\\!\\!\text{ }
From 1
Dimensions of EMF= !![!! ML2T-2 !!]!!  !![!! AT !!]!! !![!! ML2T-3A-1 !!]!! \text{EMF=}\dfrac{\text{ }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}}\text{ }\\!\\!]\\!\\!\text{ }}{\text{ }\\!\\![\\!\\!\text{ AT }\\!\\!]\\!\\!\text{ }}\text{= }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-3}}}{{\text{A}}^{\text{-1}}}\text{ }\\!\\!]\\!\\!\text{ }
Therefore required dimensions of electromotive force is [ML2T3A1][M{{L}^{2}}{{T}^{-3}}{{A}^{-1}}]
Therefore option D is correct.

Note: In general force is defined as
F=maF=ma
That’s why we write the dimension of force as [MLT2]\left[ ML{{T}^{-2}} \right].
As we wrote dimensional formulas in terms of exponents that’s why we can only do division and multiplication with this.