Solveeit Logo

Question

Mathematics Question on Binomial theorem

The digit in the unit place of 2009!+378862009! + 3^{7886} is

A

9

B

7

C

3

D

1

Answer

9

Explanation

Solution

Unit's digit of 2009!=02009! = 0
Now, 31=33^1 = 3 \Rightarrow unit's digit = 3
32=93^2 = 9 \Rightarrow unit's digit = 9
33=273^3 = 27 \Rightarrow unit's digit = 7
34=813^4 = 81 \Rightarrow unit's digit = 1
35=2433^5 = 243\Rightarrow unit's digit = 3
Continuing the process, we get
37866=37860+6=34×1965×363^{7866} = 3^{7860 +6} = 3^{4 \times 1965} \times 3^6
\therefore Unit's digit of 378663^{7866}
= unit's digit of (34×1965×36)(3^{4 \times 1965} \times 3^6)
=(1)1965×9=9= (1)^{1965} \times 9 = 9
So, unit's digit of 2009!+37866=0+9=92009! + 3^{7866} = 0 + 9 = 9