Solveeit Logo

Question

Question: The digit in the tens place in the number \(\angle 1 + \angle 2 + \angle 3 + ... + \angle 99\) is...

The digit in the tens place in the number

1+2+3+...+99\angle 1 + \angle 2 + \angle 3 + ... + \angle 99 is

A

1

B

2

C

3

D

4

Answer

1

Explanation

Solution

Now

1+2+3+4+5+6\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6

= 1+ 2 + 6 + 24 + 120 + 720 = 873 and 7+8+9\angle 7 + \angle 8 + \angle 9

= 5040 + 40320+ 362880 = 408240

16mu+6mu26mu+6mu36mu+6mu...+6mu96mu=6mu409113\angle 1\mspace{6mu} + \mspace{6mu}\angle 2\mspace{6mu} + \mspace{6mu}\angle 3\mspace{6mu} + \mspace{6mu}... + \mspace{6mu}\angle 9\mspace{6mu} = \mspace{6mu} 409113

All the numbers from 10\angle 10 to 99\angle 99 are divisible by 100, therefore, 10\angle 10 + 11+...+99\angle 11 + ... + \angle 99 will have 0 in the units place and 0 in the hundreds place.

Hence 1+2+3+...+99\angle 1 + \angle 2 + \angle 3 + ... + \angle 99 will have the digit ‘1’ in the tens place (and the digit 3 in the units place).