Solveeit Logo

Question

Question: The differentiation \[\dfrac{d}{{dx}}\left[ {\log \left\\{ {{e^x}{{\left( {\dfrac{{\left( {x - 2} \r...

The differentiation \dfrac{d}{{dx}}\left[ {\log \left\\{ {{e^x}{{\left( {\dfrac{{\left( {x - 2} \right)}}{{\left( {x + 2} \right)}}} \right)}^{\dfrac{3}{4}}}} \right\\}} \right] equal to
(A) 11
(B) (x2+1)(x24)\dfrac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} - 4} \right)}}
(C) (x21)(x24)\dfrac{{\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 4} \right)}}
(D) ex(x21)(x24){e^x}\dfrac{{\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 4} \right)}}

Explanation

Solution

Hint : This question needs knowledge of derivatives and formulas related to it, like, derivative of log(x)\log (x) is 1x\dfrac{1}{x} , derivative of x is 11. We should also remember the basic properties of logarithmic function such as log(e)=1\log (e) = 1 , log(an)=nlog(a)\log \left( {{a^n}} \right) = n\log \left( a \right) , log(ab)=log(a)+log(b)\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right) and log(ab)=log(a)log(b)\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right) . Keep in mind the algebraic property (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} to get to the final answer.

Complete step-by-step answer :
First we let the function as y so that we can write it easily,
Therefore, we have,
y = \left[ {\log \left\\{ {{e^x}{{\left( {\dfrac{{\left( {x - 2} \right)}}{{\left( {x + 2} \right)}}} \right)}^{\dfrac{3}{4}}}} \right\\}} \right]
Now we apply the logarithmic property log(ab)=log(a)+log(b)\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right)
y=log[ex]+log[(x2x+2)34]\Rightarrow y = \log \left[ {{e^x}} \right] + \log \left[ {{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right]
Now, we apply the property that logarithm log(ab)=log(a)log(b)\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right) , we get,
y=log[ex]+[log[(x2)34]log[(x+2)34]]\Rightarrow y = \log \left[ {{e^x}} \right] + \left[ {\log \left[ {{{\left( {x - 2} \right)}^{\dfrac{3}{4}}}} \right] - \log \left[ {{{\left( {x + 2} \right)}^{\dfrac{3}{4}}}} \right] } \right]
Now, applying the power rule of logarithm, that is log(an)=nlog(a)\log \left( {{a^n}} \right) = n\log \left( a \right) , we get,
y=log[ex]+[34log(x2)34log(x+2)]\Rightarrow y = \log \left[ {{e^x}} \right] + \left[ {\dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right]
We know that, natural logarithm of e is 11 so we get,
y=xloge+[34log(x2)34log(x+2)]\Rightarrow y = x\log e + \left[ {\dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right]
y=x+34log(x2)34log(x+2)\Rightarrow y = x + \dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)
Now, differentiating both sides with respect to x,
dydx=ddx[x+34log(x2)34log(x+2)]\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {x + \dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right]
Applying the addition property of derivative, that is, ddx[u+v]=dudx+dvdx\dfrac{d}{{dx}}[u + v] = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}
So, we get,
dydx=ddx[x]+ddx[34log(x2)]ddx[34log(x+2)]\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ x \right] + \dfrac{d}{{dx}}\left[ {\dfrac{3}{4}\log \left( {x - 2} \right)} \right] - \dfrac{d}{{dx}}\left[ {\dfrac{3}{4}\log \left( {x + 2} \right)} \right]
Now, we know that the derivative of x is 11 and we can take the constant out of the differentiation. Now, we get,
dydx=1+34(1(1)x2)34(1(1)x+2)\Rightarrow \dfrac{{dy}}{{dx}} = 1 + \dfrac{3}{4}\left( {\dfrac{{1\left( 1 \right)}}{{x - 2}}} \right) - \dfrac{3}{4}\left( {\dfrac{{1\left( 1 \right)}}{{x + 2}}} \right)
On taking LCM in the denominator we get,
dydx=4(x2)(x+2)+3(x+2)3(x2)4(x2)(x+2)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 2} \right)\left( {x + 2} \right) + 3\left( {x + 2} \right) - 3\left( {x - 2} \right)}}{{4\left( {x - 2} \right)\left( {x + 2} \right)}}
Applying the algebraic property (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} , we get,
dydx=4(x24)+3x+63x+64(x24)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4} \right) + 3x + 6 - 3x + 6}}{{4\left( {{x^2} - 4} \right)}}
Now, on solving we get,
dydx=4(x24)+124(x24)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4} \right) + 12}}{{4\left( {{x^2} - 4} \right)}}
Taking 44 as common in denominator,
dydx=4(x24+3)4(x24)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4 + 3} \right)}}{{4\left( {{x^2} - 4} \right)}}
Cancelling common factors in numerator and denominator, we get,
dydx=(x21)(x24)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 4} \right)}}
Hence, option (C) is the correct answer.

Note : This question requires knowledge of formulas of derivatives like derivative of log(x)\log (x) is 1x\dfrac{1}{x} , derivative of x is 1. We should also remember the basic logarithmic properties, that is, log(e)=1\log (e) = 1 , log(an)=nlog(a)\log \left( {{a^n}} \right) = n\log \left( a \right) , log(ab)=log(a)+log(b)\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right) and log(ab)=log(a)log(b)\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right) by heart. Algebraic property (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} should also be kept in mind. Take care while doing the calculations.