Question
Question: The differential equation $\{xy^3(1+\cos x)-y\}dx+xdy=0$ represents the curve $\frac{x^2}{ay^2}=\fra...
The differential equation {xy3(1+cosx)−y}dx+xdy=0 represents the curve ay2x2=bx3+x2sinx+cxcosx−dsinx+k. Then a+b+c+d is equal to:

9
7
5
314−82
9
Solution
The given differential equation is: {xy3(1+cosx)−y}dx+xdy=0
Rearrange the terms to isolate xdy and ydx: xdy=−{xy3(1+cosx)−y}dx xdy=−xy3(1+cosx)dx+ydx xdy−ydx=−xy3(1+cosx)dx
This equation resembles the differential of xy or −yx. Let's divide by x2: x2xdy−ydx=−x2xy3(1+cosx)dx d(xy)=−xy3(1+cosx)dx
Let v=xy. Then y=vx. Substitute this into the equation: dv=−x(vx)3(1+cosx)dx dv=−xv3x3(1+cosx)dx dv=−v3x2(1+cosx)dx
This is a variable separable differential equation. Separate the variables v and x: v3dv=−x2(1+cosx)dx
Now, integrate both sides: ∫v−3dv=−∫(x2+x2cosx)dx −2v−2=−[∫x2dx+∫x2cosxdx]+C1 −2v21=−[3x3+∫x2cosxdx]+C1 2v21=3x3+∫x2cosxdx−C1 Let C=−C1 (constant of integration). 2v21=3x3+∫x2cosxdx+C
Next, we need to evaluate the integral ∫x2cosxdx using integration by parts. The formula for integration by parts is ∫udv=uv−∫vdu.
First, for ∫x2cosxdx: Let u=x2 and dv=cosxdx. Then du=2xdx and v=sinx. ∫x2cosxdx=x2sinx−∫(sinx)(2x)dx=x2sinx−2∫xsinxdx
Now, we need to evaluate ∫xsinxdx using integration by parts again: Let u=x and dv=sinxdx. Then du=dx and v=−cosx. ∫xsinxdx=x(−cosx)−∫(−cosx)dx=−xcosx+∫cosxdx=−xcosx+sinx
Substitute this back into the expression for ∫x2cosxdx: ∫x2cosxdx=x2sinx−2(−xcosx+sinx) ∫x2cosxdx=x2sinx+2xcosx−2sinx
Substitute this result back into the main solution equation: 2v21=3x3+(x2sinx+2xcosx−2sinx)+C
Finally, substitute v=xy back into the equation: 2(y/x)21=3x3+x2sinx+2xcosx−2sinx+C 2y2x2=3x3+x2sinx+2xcosx−2sinx+C
Now, compare this solution with the given form of the curve: ay2x2=bx3+x2sinx+cxcosx−dsinx+k
By comparing the coefficients of corresponding terms:
- Coefficient of y2x2: a1=21⟹a=2
- Coefficient of 1x3: b1=31⟹b=3
- Coefficient of x2sinx: 1=1 (matches)
- Coefficient of xcosx: c=2
- Coefficient of sinx: −d=−2⟹d=2
- Constant term: k=C
We need to find the value of a+b+c+d: a+b+c+d=2+3+2+2=9