Solveeit Logo

Question

Question: The differential equation whose solution is \(y = A \sin x + B \cos x\) is...

The differential equation whose solution is

y=Asinx+Bcosxy = A \sin x + B \cos x is

A

d2ydx2+y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + y = 0

B

d2ydx2y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } - y = 0

C

dydx+y=0\frac { d y } { d x } + y = 0

D

None of these

Answer

d2ydx2+y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + y = 0

Explanation

Solution

y=Asinx+Bcosxy = A \sin x + B \cos xdydx=AcosxBsinx\frac { d y } { d x } = A \cos x - B \sin x

d2ydx2=AsinxBcosx\frac { d ^ { 2 } y } { d x ^ { 2 } } = - A \sin x - B \cos x =(Asinx+Bcosx)=y= - ( A \sin x + B \cos x ) = - y

d2ydx2+y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + y = 0is the required differential equation.