Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The differential equation whose general solution is Ax2+By2=1Ax^2 + By^2 = 1, where AA and BB are arbitrary constants is of ?

A

first order and first degree

B

second order and first degree

C

second order and second degree

D

first order and second degree

Answer

second order and first degree

Explanation

Solution

Ax2+By2=1Ax^2 + By^2 = 1 can be written as
By2=1Ax2By^2 = 1 -Ax^2
Differentiating w.r.t. x'x', we get
2Bydydx=2Ax2By \frac{dy}{dx}=-2Ax
dydx=ABxyAB=yxdydx\Rightarrow \frac{dy}{dx}=- \frac{A}{B} \frac{x}{y} \Rightarrow -\frac{A}{B} =\frac{y}{x} \frac{dy}{dx}
Again differentiating w.r.t. x'x', we get
d2ydx2=(AB)(yxdydxy2)\frac{d^{2}y}{dx^{2}} =\left(-\frac{A}{B} \right)\left(\frac{y-x \frac{dy}{dx}}{y^{2}}\right)
=(AB)(yx(AB.xy)y2)= \left(-\frac{A}{B}\right)\left(\frac{y-x\left(-\frac{A}{B}. \frac{x}{y}\right)}{y^{2}}\right)
d2ydx2=(yx.dydx)yx(yx.dydx.xy)y2\frac{d^{2}y}{dx^{2}}=\left(\frac{y}{x} . \frac{dy}{dx}\right) \frac{y-x\left(\frac{y}{x} . \frac{dy}{dx} . \frac{x}{y}\right)}{y^{2}}
=yx.dydx(yxdydxy2)=\frac{y}{x} . \frac{dy}{dx}\left(\frac{y-x \frac{dy}{dx}}{y^{2}}\right)
y2d2ydx2=y2xdydxy(dydx)2\Rightarrow y^{2} \frac{d^{2} y}{dx^{2}} =\frac{y^{2}}{x} \frac{dy}{dx} -y\left(\frac{dy}{dx}\right)^{2}
yd2ydx2+(dydx)2yxdydx=0\Rightarrow y \frac{d^{2}y}{dx^{2}}+ \left(\frac{dy}{dx}\right)^{2} -\frac{y}{x} \frac{dy}{dx}= 0
xyd2ydx2+x(dydx)2ydydx=0\Rightarrow xy \frac{d^{2}y}{dx^{2}} +x \left(\frac{dy}{dx}\right)^{2} -y \frac{dy}{dx}= 0
has 2nd order and first degree.