Solveeit Logo

Question

Mathematics Question on Differential equations

The differential equation which represents the family of curves y=c1ec2xy=c_1e^{c_2x}, where c1c_1 and c2c_2 are arbitrary constants is

A

y=y2y '=y^2

B

y=yyy ''=y' y

C

yy=yyy ''=y'

D

yy=(y)2yy ''=(y')^2

Answer

yy=(y)2yy ''=(y')^2

Explanation

Solution

y=c1ec2x...(1)y=c_{1}e^{c_{2}x}\,...\left(1\right) y=c2c1ec2xy '=c_{2}c_{1}e^{c_{2}x} y=c2y...(2)y '=c_{2}y \,...\left(2\right) y=c2yy ''=c_{2}y ' From (2)\left(2\right) c2=yyc_{2}=\frac{y '}{y} So, y"=(y)2yyy"=(y)2y "=\frac{\left(y '\right)^{2}}{y} \Rightarrow yy "=\left(y '\right)^{2}