Solveeit Logo

Question

Question: The differential equation which is satisfied by all the curves, y = Ae<sup>2x</sup> + Be<sup>–x/2</s...

The differential equation which is satisfied by all the curves, y = Ae2x + Be–x/2 , where A and B are non-zero constants, is-

A

2d2ydx2\frac{d^{2}y}{dx^{2}} – 3dydx\frac{dy}{dx} – 2y = 0

B

2d2ydx2\frac{d^{2}y}{dx^{2}} + 3dydx\frac{dy}{dx} – 2y = 0

C

2d2ydx2\frac{d^{2}y}{dx^{2}} + 3dydx\frac{dy}{dx} + 2y = 0

D

None of these

Answer

2d2ydx2\frac{d^{2}y}{dx^{2}} – 3dydx\frac{dy}{dx} – 2y = 0

Explanation

Solution

We have, y = Ae2x + Be–x/2 ... (1)

Ždydx\frac{dy}{dx} = 2Ae2x12\frac{1}{2}Be–x/2 ... (2)

Žd2ydx2\frac{d^{2}y}{dx^{2}} = 4Ae2x + 14\frac{1}{4}Be–x/2 ... (3)

Eliminating A between equations (1) and (2), we get

Be–x/2= 25\frac{2}{5} (2ydydx)\left( 2y - \frac{dy}{dx} \right) ... (4)

\ From (1), Ae2x = y – Be–x/2

= y – 25\frac { 2 } { 5 } (2ydydx)\left( 2y - \frac{dy}{dx} \right)

ŽAe2x= 15\frac { 1 } { 5 } (y+2dydx)\left( y + 2\frac{dy}{dx} \right) ... (5)

So, from equations (3), (4) and (5), we get

d2ydx2\frac{d^{2}y}{dx^{2}} = 25\frac { 2 } { 5 } (2ydydx)\left( 2y - \frac{dy}{dx} \right)

Ž 2 d2ydx2\frac{d^{2}y}{dx^{2}} – 3 dydx\frac{dy}{dx} – 2y = 0