Solveeit Logo

Question

Question: The differential equation satisfied by the family of curves \(y = a x \cos \left( \frac { 1 } { x }...

The differential equation satisfied by the family of curves y=axcos(1x+b)y = a x \cos \left( \frac { 1 } { x } + b \right) , where a, b are parameters, i

A

x2y2+y=0x ^ { 2 } y _ { 2 } + y = 0

B

x4y2+y=0x ^ { 4 } y _ { 2 } + y = 0

C

xy2y=0x y _ { 2 } - y = 0

D

x4y2y=0x ^ { 4 } y _ { 2 } - y = 0

Answer

x4y2+y=0x ^ { 4 } y _ { 2 } + y = 0

Explanation

Solution

y=axcos(1x+b)y = a x \cos \left( \frac { 1 } { x } + b \right) .…. (i)

Differentiate (i), we get

y1=a[cos(1x+b)xsin(1x+b)(1x2)]y _ { 1 } = a \left[ \cos \left( \frac { 1 } { x } + b \right) - x \sin \left( \frac { 1 } { x } + b \right) \left( \frac { - 1 } { x ^ { 2 } } \right) \right]

=a[cos(1x+b)+1xsin(1x+b)]= a \left[ \cos \left( \frac { 1 } { x } + b \right) + \frac { 1 } { x } \sin \left( \frac { 1 } { x } + b \right) \right] .....(ii)

Again, differentiate (ii), we get

y2=ax3cos(1x+b)y _ { 2 } = \frac { - a } { x ^ { 3 } } \cos \left( \frac { 1 } { x } + b \right)

=axx4cos(1x+b)= \frac { - a x } { x ^ { 4 } } \cos \left( \frac { 1 } { x } + b \right) =yx4= \frac { - y } { x ^ { 4 } }x4y2+y=0x ^ { 4 } y _ { 2 } + y = 0 .