Solveeit Logo

Question

Question: The differential equation representing the family of hyperbola a<sup>2</sup>x<sup>2</sup> –b<sup>2</...

The differential equation representing the family of hyperbola a2x2 –b2y2 = c2 is –

A

yy\frac{y^{''}}{y^{'}} + yy\frac{y^{'}}{y} = 1x\frac{1}{x}

B

yy\frac{y^{''}}{y^{'}} + yy\frac{y^{'}}{y} = 1x2\frac{1}{x^{2}}

C

yy\frac{y^{''}}{y^{'}}yy\frac{y^{'}}{y} = 1x\frac{1}{x}

D

yy\frac{y^{''}}{y^{'}} = yy\frac{y}{y^{'}}1x\frac{1}{x}

Answer

yy\frac{y^{''}}{y^{'}} + yy\frac{y^{'}}{y} = 1x\frac{1}{x}

Explanation

Solution

Differentiating the equation twice w.r.t. x, we have

2a2 x – 2b2yy' = 0, a2 – b2(y'2 + yy'') = 0

Eliminating a2 and b2 we have the differential equation

yy+yy=1x\frac{y^{''}}{y^{'}} + \frac{y^{'}}{y} = \frac{1}{x}