Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The differential equation of y=Ae2x+Be2xy = Ae^{2x} + Be^{-2x} is :

A

dydx4y=0\frac{dy}{dx} - 4y = 0

B

d2ydx24y=0\frac{d^2 y}{dx^2 } - 4y = 0

C

d2ydx2=y2\frac{d^2y}{dx^2} = y^2

D

d2ydx2y=0\frac{d^2y}{dx^2} - y = 0

Answer

d2ydx24y=0\frac{d^2 y}{dx^2 } - 4y = 0

Explanation

Solution

Given : y=Ae2x+Be2xy = Ae^{2x} + Be^{-2x} dydx=Ae2x.2+Be2x(2)\therefore \frac{dy}{dx} = Ae^{2x} . 2 + Be^{-2x} \left(-2\right) dydx=2Ae2x2Be2x\Rightarrow \frac{dy}{dx} = 2 Ae^{2x} - 2 Be^{-2x} d2ydx2=2Ae2x.22Be2x(2)\frac{d^{2}y}{dx^{2} } = 2Ae^{2x}.2- 2 Be^{-2x} (- 2) =4Ae2x+4Be2x= 4 Ae^{2x} + 4 Be^{-2x} d2ydx2=4yd2ydx24y=0\Rightarrow \frac{d^{2}y}{dx^{2} } = 4 y \Rightarrow \frac{d^{2}y}{dx^{2}} - 4y = 0