Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The differential equation of the family of parabolas y2=4axy^2 = 4ax, where aa is parameter, is

A

dydx=y2x\frac{dy}{dx}=\frac{y}{2x}

B

dydx=y2x\frac{dy}{dx}= - \frac{y}{2x}

C

dydx=2xy\frac{dy}{dx}= - \frac{2x}{y}

D

dydx=2xy\frac{dy}{dx}=\frac{2x}{y}

Answer

dydx=y2x\frac{dy}{dx}=\frac{y}{2x}

Explanation

Solution

Given equation of parabola is y2=4axy^2 = 4ax ... (i)
Differentiating (i) w.r.t. xx, we get
2ydydx=4a2y \frac{dy}{dx} =4a
dydx=2aya=y2dydx\Rightarrow \frac{dy}{dx}=\frac{2a}{y} \Rightarrow a =\frac{y}{2} \frac{dy}{dx}
Substituting the value of a in (i), we get
y2=4.y2dydxxy^{2} =4. \frac{y}{2} \frac{dy}{dx}x
y2=2xydydxdydx=y2x\Rightarrow y^{2} =2xy \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =\frac{y}{2x}