Solveeit Logo

Question

Question: The differential equation of the family of curves \(A{{e}^{3x}}+B{{e}^{5x}}\) where A and B are arbi...

The differential equation of the family of curves Ae3x+Be5xA{{e}^{3x}}+B{{e}^{5x}} where A and B are arbitrary constants is:
[a] d2ydx2+8dydx+15y=0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+8\dfrac{dy}{dx}+15y=0
[b] d2ydx2dydx+y=0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\dfrac{dy}{dx}+y=0
[c] d2ydx28dydx+15y=0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0
[d] None of the above

Explanation

Solution

Hint: Try removing the variables A and B by differentiating twice and solving for A and B. Alternatively you can remove by finding the value of A in terms of B, y and x. Then differentiate once and find the value of B in terms of x, y, dydx\dfrac{dy}{dx} and Differentiate again.

Complete step-by-step answer:
Let y=Ae3x+Be5xy=A{{e}^{3x}}+B{{e}^{5x}}
Differentiating both sides, we get
dydx=ddx(Ae3x+Be5x)\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}}+B{{e}^{5x}} \right)
We know that ddx(f(x)+g(x))=ddx(f(x))+ddx(g(x))\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)
Using the above property, we get
dydx=ddx(Ae3x)+ddx(Be5x)\dfrac{dy}{dx}=\dfrac{d}{dx}\left( A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( B{{e}^{5x}} \right)
We know that ddx(Cg(x))=Cddxg(x)\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)
Using we get
dydx=Addxe3x+Bddxe5x\dfrac{dy}{dx}=A\dfrac{d}{dx}{{e}^{3x}}+B\dfrac{d}{dx}{{e}^{5x}}
Chain rule of differentiation ddxf(g(x))=dd(g(x))f(g(x))×ddxg(x)\dfrac{d}{dx}f\left( g\left( x \right) \right)=\dfrac{d}{d\left( g(x) \right)}f\left( g\left( x \right) \right)\times \dfrac{d}{dx}g(x)
Using chain rule, we get
dydx=Add(3x)e3xddx(3x)+Bdd(5x)e5xddx(5x)\dfrac{dy}{dx}=A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}(3x)+B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}(5x)
We know that ddtet=et\dfrac{d}{dt}{{e}^{t}}={{e}^{t}}
dydx=Ae3xddx3x+Be5xddx5x\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\dfrac{d}{dx}3x+B{{e}^{5x}}\dfrac{d}{dx}5x
dydx=Ae3x×3+Be5x×5\Rightarrow \dfrac{dy}{dx}=A{{e}^{3x}}\times 3+B{{e}^{5x}}\times 5
dydx=3Ae3x+5Be5x (i)\Rightarrow \dfrac{dy}{dx}=3A{{e}^{3x}}+5B{{e}^{5x}}\text{ (i)}
Differentiating again we get
d2ydx2=ddx(3Ae3x+5Be3x)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}}+5B{{e}^{3x}} \right)
We know that ddx(f(x)+g(x))=ddx(f(x))+ddx(g(x))\dfrac{d}{dx}\left( f(x)+g(x) \right)=\dfrac{d}{dx}\left( f(x) \right)+\dfrac{d}{dx}\left( g(x) \right)
Using the above property, we get
d2ydx2=ddx(3Ae3x)+ddx(5Be5x)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3A{{e}^{3x}} \right)+\dfrac{d}{dx}\left( 5B{{e}^{5x}} \right)
We know that ddx(Cg(x))=Cddxg(x)\dfrac{d}{dx}\left( Cg(x) \right)=C\dfrac{d}{dx}g(x)
Using we get
d2ydx2=3Addxe3x+5Bddxe5x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{dx}{{e}^{3x}}+5B\dfrac{d}{dx}{{e}^{5x}}
Using chain rule, we get
d2ydx2=3Add(3x)e3xddx3x+5Bdd(5x)e5xddx5x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A\dfrac{d}{d(3x)}{{e}^{3x}}\dfrac{d}{dx}3x+5B\dfrac{d}{d(5x)}{{e}^{5x}}\dfrac{d}{dx}5x
d2ydx2=3Ae3x×3+5Be5x×5\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=3A{{e}^{3x}}\times 3+5B{{e}^{5x}}\times 5
d2ydx2=9Ae3x+25Be5x (ii)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=9A{{e}^{3x}}+25B{{e}^{5x}}\text{ (ii)}
Multiplying equation (i) by 3 and subtracting (i) from (ii) we get
d2ydx23dydx=9Ae3x9Ae3x+25Be5x15Be5x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=9A{{e}^{3x}}-9A{{e}^{3x}}+25B{{e}^{5x}}-15B{{e}^{5x}}
d2ydx23dydx=10Be5x\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}=10B{{e}^{5x}}
Dividing both sides by 10e5x10{{e}^{5x}}
110[d2ydx23dydx]e5x=B (iii)\Rightarrow \dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}=B\text{ (iii)}
Multiplying equation (i) by 5 and subtracting (i) from (ii) we get
d2ydx25dydx=9A3x15A3x+25Be3x25Be3x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=9{{A}^{3x}}-15{{A}^{3x}}+25B{{e}^{3x}}-25B{{e}^{3x}}
d2ydx25dydx=6Ae3x\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx}=-6A{{e}^{3x}}
Dividing both sides by 6e3x-6{{e}^{3x}} we get
16[d2ydx25dydx]e3x=A (iv)\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}=A\text{ (iv)}
Put the value of B and A from (iii) and (iv) in the family equation we get
y=16[d2ydx25dydx]e3xe3x+110[d2ydx23dydx]e5xe5xy=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]{{e}^{-3x}}{{e}^{3x}}+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]{{e}^{-5x}}{{e}^{5x}}
y=16[d2ydx25dydx]+110[d2ydx23dydx]\Rightarrow y=\dfrac{-1}{6}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+\dfrac{1}{10}\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]
Multiplying both sides by 30 we get
30y=5[d2ydx25dydx]+3[d2ydx23dydx]30y=-5\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-5\dfrac{dy}{dx} \right]+3\left[ \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx} \right]
Using distributive law a(b+c)=ab+aca(b+c)=ab+ac
30y=5d2ydx2+25dydx+3d2ydx29dydx\Rightarrow 30y=-5\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+25\dfrac{dy}{dx}+3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-9\dfrac{dy}{dx}
30y=2d2ydx2+16dydx\Rightarrow 30y=-2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+16\dfrac{dy}{dx}
Dividing both sides by 2 and transposing all terms to LHS we get
15y+d2ydx28dydx=015y+\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}=0
d2ydx28dydx+15y=0\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0
Option (c) is correct.

Note: This question can also be solved by using the following property
If y=Aemx+Benxy=A{{e}^{mx}}+B{{e}^{nx}} then the differential equation of the family of the curves is f(D)=0f(D)=0 where
f(x)f(x) is the quadratic with roots m and n.
Here m = 3 and n = 5.
So, f(x) = (x-3)(x-5) = x28x+15{{x}^{2}}-8x+15
Hence the differential equation of the family of curves is f(D) = D28D+15=0{{D}^{2}}-8D+15=0
d2ydx28dydx+15=0\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15=0
Alternatively, we have y=Ae3x+Be5xy=A{{e}^{3x}}+B{{e}^{5x}}
yBe5x=Ae3x\Rightarrow y-B{{e}^{5x}}=A{{e}^{3x}}
(yBe5x)e3x=A\Rightarrow \left( y-B{{e}^{5x}} \right){{e}^{-3x}}=A
Differentiating both sides w.r.t x once we get
ddx((yBe5x)e3x)=dAdx\dfrac{d}{dx}\left( \left( y-B{{e}^{5x}} \right){{e}^{-3x}} \right)=\dfrac{dA}{dx}
Using product rule of differentiation ddxuv=vdudx+udvdx\dfrac{d}{dx}uv=v\dfrac{du}{dx}+u\dfrac{dv}{dx} we get
e3xd(yBe5x)dx+(yBe5x)ddxe3x=0{{e}^{-3x}}\dfrac{d\left( y-B{{e}^{5x}} \right)}{dx}+\left( y-B{{e}^{5x}} \right)\dfrac{d}{dx}{{e}^{-3x}}=0
e3x[dydx5Be5x]3(yBe5x)e3x=0\Rightarrow {{e}^{-3x}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}} \right]-3\left( y-B{{e}^{5x}} \right){{e}^{-3x}}=0
Taking e3x{{e}^{-3x}} common and dividing both sides by e3x{{e}^{-3x}}
e3xe3x[dydx5Be5x3y+3Be5x]=0e3x\dfrac{{{e}^{-3x}}}{{{e}^{-3x}}}\left[ \dfrac{dy}{dx}-5B{{e}^{5x}}-3y+3B{{e}^{5x}} \right]=\dfrac{0}{{{e}^{-3x}}}
dydx2Be5x3y=0\dfrac{dy}{dx}-2B{{e}^{5x}}-3y=0
dydx3y=2Be5x\Rightarrow \dfrac{dy}{dx}-3y=2B{{e}^{5x}}
12[dydx3y]e5x=B\Rightarrow \dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]{{e}^{-5x}}=B
Differentiating again we get
12ddx[(dydx3y)e5x]=0\dfrac{1}{2}\dfrac{d}{dx}\left[ \left( \dfrac{dy}{dx}-3y \right){{e}^{-5x}} \right]=0
Using product rule of differentiation
12e5xddx(dydx3y)+12[dydx3y]ddxe5x=0\dfrac{1}{2}{{e}^{-5x}}\dfrac{d}{dx}\left( \dfrac{dy}{dx}-3y \right)+\dfrac{1}{2}\left[ \dfrac{dy}{dx}-3y \right]\dfrac{d}{dx}{{e}^{-5x}}=0
Taking e5x2\dfrac{{{e}^{-5x}}}{2} and transposing to RHS we get
d2ydx23dydx5[dydx3y]=0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-3\dfrac{dy}{dx}-5\left[ \dfrac{dy}{dx}-3y \right]=0
d2ydx28dydx+15y=0\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-8\dfrac{dy}{dx}+15y=0