Solveeit Logo

Question

Question: The differential equation of the family of curves \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2...

The differential equation of the family of curves x2a2+y2a2+λ2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1 (λ\lambda is arbitrary constant)
A.(x2a2)y1=xy({x^2} - {a^2}){y_1} = xy
B.(x2a2)y2xy=0({x^2} - {a^2}){y_2} - xy = 0
C.x2y2a2y=0{x^2}{y_2} - {a^2}y = 0
D.(x2a2)y1+xy=0({x^2} - {a^2}){y_1} + xy = 0

Explanation

Solution

Hint: The differential equation can be found by eliminating λ\lambda from the given family of curves. As there is only one variable that needs to be eliminated, we will first transform the equation so that the λ\lambda that is to be eliminated is on one side and the variables on others. By differentiating both sides, we will eliminate the variable and find the differential equation in terms ofx,y,y1,ax,y,{y_1},a.

Complete step by step solution:

Given curve: x2a2+y2a2+λ2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1
We will transform the curve into a simpler equation so that eliminating λ\lambda could be easy.
x2a2+y2a2+λ2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1
y2a2+λ2=1x2a2\dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}}
y2a2+λ2=a2x2a2\dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}}
Cross multiplying,
a2y2=(a2x2)(a2+λ2){a^2}{y^2} = \left( {{a^2} - {x^2}} \right)\left( {{a^2} + {\lambda ^2}} \right)
(a2x2)a2y2=1a2+λ2\dfrac{{\left( {{a^2} - {x^2}} \right)}}{{{a^2}{y^2}}} = \dfrac{1}{{{a^2} + {\lambda ^2}}}
a2a2y2x2a2y2=1a2+λ2\dfrac{{{a^2}}}{{{a^2}{y^2}}} - \dfrac{{{x^2}}}{{{a^2}{y^2}}} = \dfrac{1}{{{a^2} + {\lambda ^2}}}
Now we have constants on one side and variables on one. By differentiating, we can easily eliminate λ\lambda
1y21a2(x2y2)=1a2+λ2\dfrac{1}{{{y^2}}} - \dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{1}{{{a^2} + {\lambda ^2}}}
Differentiating the above equation w.r.t xx
\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) - \dfrac{d}{{dx}}\left\\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\\} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right)
Now, we know that derivative of a constant is zero
ddx(1a2+λ2)=0\dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right) = 0 …(i)
Also, ddx(1y2)=ddx(y2)\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = \dfrac{d}{{dx}}\left( {{y^{ - 2}}} \right)
Now, derivative of xn{x^n} is nxn1n{x^{n - 1}}
ddx(1y2)=2y3dydx\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = - 2{y^{ - 3}}\dfrac{{dy}}{{dx}}
ddx(1y2)=2y3y1=2y1y3\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = - 2{y^{ - 3}}{y^1} = - \dfrac{{2{y_1}}}{{{y^3}}} …(ii)
Now, \dfrac{d}{{dx}}\left\\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\\} = \dfrac{1}{{{a^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)
Now, applying the division rule, i.e.
ddx(uv)=v(u)u(v)v2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\left( {u'} \right) - u\left( {v'} \right)}}{{{v^2}}} where, uu'and vv'is the derivative of u and v with respect to xx
Using this rule to find, ddx(x2y2)\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)
ddx(x2y2)=(y2)(ddx(x2))(x2)(ddx(y2))(y2)2\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{\left( {{y^2}} \right)\left( {\dfrac{d}{{dx}}\left( {{x^2}} \right)} \right) - \left( {{x^2}} \right)\left( {\dfrac{d}{{dx}}\left( {{y^2}} \right)} \right)}}{{{{\left( {{y^2}} \right)}^2}}}
ddx(x2y2)=(y2)2x(x2)2ydydxy4\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{\left( {{y^2}} \right)2x - \left( {{x^2}} \right)2y\dfrac{{dy}}{{dx}}}}{{{y^4}}}
ddx(x2y2)=2xy22x2y3y1\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}
1a2ddx(x2y2)=1a2(2xy22x2y3y1)\dfrac{1}{{{a^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{1}{{{a^2}}}\left( {\dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}} \right) …(iii)
Now, \dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) - \dfrac{d}{{dx}}\left\\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\\} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right)
Substituting, (i), (ii) and (iii)
2y1y31a2(2xy22x2y3y1)=0- \dfrac{{2{y_1}}}{{{y^3}}} - \dfrac{1}{{{a^2}}}\left( {\dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}} \right) = 0
2y1y3=1a2(2x2y3y12xy2)\dfrac{{2{y_1}}}{{{y^3}}} = \dfrac{1}{{{a^2}}}\left( {\dfrac{{2{x^2}}}{{{y^3}}}{y_1} - \dfrac{{2x}}{{{y^2}}}} \right)
2a2y1y3=2x2y12xyy3\dfrac{{2{a^2}{y_1}}}{{{y^3}}} = \dfrac{{2{x^2}{y_1} - 2xy}}{{{y^3}}}
Now, as we knowy0y \ne 0
2a2y1=2x2y12xy2{a^2}{y_1} = 2{x^2}{y_1} - 2xy
2xy=2x2y12a2y12xy = 2{x^2}{y_1} - 2{a^2}{y_1}
xy=(x2a2)y1xy = \left( {{x^2} - {a^2}} \right){y_1}
(x2a2)y1=xy({x^2} - {a^2}){y_1} = xy
Hence, the differential equation of given family of curves x2a2+y2a2+λ2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1is (x2a2)y1=xy({x^2} - {a^2}){y_1} = xy
Therefore, option A (x2a2)y1=xy({x^2} - {a^2}){y_1} = xy is correct
Note: A different approach can be by making an estimation of the differential equation by looking at the number of arbitrary constants present in the given family of curves. The number of arbitrary constants present indicates the degree of the differential equation.
In the given family of curves x2a2+y2a2+λ2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1, there is only a single arbitrary constant. So the degree of the differential equation would be 1, therefore making options b and c as incorrect. As mentioned, the method does only estimation, not a perfect way to get the correct answer.