Solveeit Logo

Question

Question: The differential equation of the family of curves represented by the equation \(x ^ { 2 } + y ^ { 2...

The differential equation of the family of curves represented by the equation x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 } is

A

x+ydydx=0x + y \frac { d y } { d x } = 0

B

ydydx=xy \frac { d y } { d x } = x

C

yd2ydx2+(dydx)2=0y \frac { d ^ { 2 } y } { d x ^ { 2 } } + \left( \frac { d y } { d x } \right) ^ { 2 } = 0

D

None of these

Answer

x+ydydx=0x + y \frac { d y } { d x } = 0

Explanation

Solution

Given equation x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 }. Differentiate it w.r.t. x,

we get 2x+2ydydx=02 x + 2 y \frac { d y } { d x } = 0x+ydydx=0x + y \frac { d y } { d x } = 0.