Solveeit Logo

Question

Question: The differential equation of the family of curves \(v = \frac { A } { r } + B\)where A and B are arb...

The differential equation of the family of curves v=Ar+Bv = \frac { A } { r } + Bwhere A and B are arbitrary constants, is

A

d2vdr2+1rdvdr=0\frac { d ^ { 2 } v } { d r ^ { 2 } } + \frac { 1 } { r } \frac { d v } { d r } = 0

B

d2vdr22rdvdr=0\frac { d ^ { 2 } v } { d r ^ { 2 } } - \frac { 2 } { r } \frac { d v } { d r } = 0

C

d2vdr2+2rdvdr=0\frac { d ^ { 2 } v } { d r ^ { 2 } } + \frac { 2 } { r } \frac { d v } { d r } = 0

D

None of these

Answer

d2vdr2+2rdvdr=0\frac { d ^ { 2 } v } { d r ^ { 2 } } + \frac { 2 } { r } \frac { d v } { d r } = 0

Explanation

Solution

dvdr=Ar2+0\frac { d v } { d r } = - \frac { A } { r ^ { 2 } } + 0d2vdr2=2Ar3\frac { d ^ { 2 } v } { d r ^ { 2 } } = \frac { 2 A } { r ^ { 3 } }d2vdr2=2r(Ar2)\frac { d ^ { 2 } v } { d r ^ { 2 } } = \frac { 2 } { r } \left( \frac { A } { r ^ { 2 } } \right)

d2vdr2=2r(dvdr)\frac { d ^ { 2 } v } { d r ^ { 2 } } = \frac { 2 } { r } \left( - \frac { d v } { d r } \right)d2vdr2+2rdvdr=0\frac { d ^ { 2 } v } { d r ^ { 2 } } + \frac { 2 } { r } \frac { d v } { d r } = 0.