Solveeit Logo

Question

Question: The differential equation of the family of curves \(y ^ { 2 } = 4 a ( x + a )\) , where a is an arb...

The differential equation of the family of curves y2=4a(x+a)y ^ { 2 } = 4 a ( x + a ) , where a is an arbitrary constant, is

A

y[1+(dydx)2]=2xdydxy \left[ 1 + \left( \frac { d y } { d x } \right) ^ { 2 } \right] = 2 x \frac { d y } { d x }

B

y[1(dydx)2]=2xdydxy \left[ 1 - \left( \frac { d y } { d x } \right) ^ { 2 } \right] = 2 x \frac { d y } { d x }

C

d2ydx2+2dydx=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } = 0

D

(dydx)3+3dydx+y=0\left( \frac { d y } { d x } \right) ^ { 3 } + 3 \frac { d y } { d x } + y = 0

Answer

y[1(dydx)2]=2xdydxy \left[ 1 - \left( \frac { d y } { d x } \right) ^ { 2 } \right] = 2 x \frac { d y } { d x }

Explanation

Solution

Given y2=4a(x+a)y ^ { 2 } = 4 a ( x + a ) Differentiating, 2y(dydx)=4a2 y \left( \frac { d y } { d x } \right) = 4 a

Eliminating a from (i) and (ii), required equation is

y[1(dydx)2]=2xdydxy \left[ 1 - \left( \frac { d y } { d x } \right) ^ { 2 } \right] = 2 x \frac { d y } { d x } .