Solveeit Logo

Question

Question: The differential equation of the family of curves represented by the equation \(x ^ { 2 } y = a\), i...

The differential equation of the family of curves represented by the equation x2y=ax ^ { 2 } y = a, is

A

dydx+2yx=0\frac { d y } { d x } + \frac { 2 y } { x } = 0

B

dydx+2xy=0\frac { d y } { d x } + \frac { 2 x } { y } = 0

C

dydx2yx=0\frac { d y } { d x } - \frac { 2 y } { x } = 0

D

dydx2xy=0\frac { d y } { d x } - \frac { 2 x } { y } = 0

Answer

dydx+2yx=0\frac { d y } { d x } + \frac { 2 y } { x } = 0

Explanation

Solution

x2y=ax ^ { 2 } y = a (On differentiating)

x2dydx+yddx(x2)=0x ^ { 2 } \frac { d y } { d x } + y \frac { d } { d x } \left( x ^ { 2 } \right) = 0x2dydx+2xy=0x ^ { 2 } \frac { d y } { d x } + 2 x y = 0

dydx+2yx=0\frac { d y } { d x } + \frac { 2 y } { x } = 0.

x2dydx+yddx(x2)=0x ^ { 2 } \frac { d y } { d x } + y \frac { d } { d x } \left( x ^ { 2 } \right) = 0x2dydx+2xy=0x ^ { 2 } \frac { d y } { d x } + 2 x y = 0

dydx+2yx=0\frac { d y } { d x } + \frac { 2 y } { x } = 0.