Solveeit Logo

Question

Question: The differential equation of the family of curves \(y = a \cos ( x + b )\) is...

The differential equation of the family of curves

y=acos(x+b)y = a \cos ( x + b ) is

A

d2ydx2y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } - y = 0

B

d2ydx2+y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + y = 0

C

d2ydx2+2y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 y = 0

D

None of these

Answer

d2ydx2+y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + y = 0

Explanation

Solution

Given equation y=acos(x+b)y = a \cos ( x + b )

Differentiate it w.r.t. x we get dydx=asin(x+b)\frac { d y } { d x } = - a \sin ( x + b )

Again d2ydx2=acos(x+b)=y\frac { d ^ { 2 } y } { d x ^ { 2 } } = - a \cos ( x + b ) = - y or d2ydx2+y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + y = 0 .