Solveeit Logo

Question

Question: The differential equation of the family of curves y = Ae<sup>3x</sup> + Be<sup>5x</sup>, where A and...

The differential equation of the family of curves y = Ae3x + Be5x, where A and B are arbitrary constants, is –

A

d2ydx2\frac{d^{2}y}{dx^{2}} + 8 dydx\frac{dy}{dx} + 15 y = 0

B

d2ydx2\frac{d^{2}y}{dx^{2}} – 8 dydx\frac{dy}{dx} + 15 y = 0

C

d2ydx2\frac{d^{2}y}{dx^{2}}dydx\frac{dy}{dx} + y = 0

D

None of these

Answer

d2ydx2\frac{d^{2}y}{dx^{2}} – 8 dydx\frac{dy}{dx} + 15 y = 0

Explanation

Solution

y = Ae3x + Be5x .... (1)

dydx\frac{dy}{dx} = 3Ae3x + 5Be5x ....(2)

d2ydx2\frac{d^{2}y}{dx^{2}} = 9Ae3x + 25Be5x ....(3)

Eliminates A & B from (1), (2) and (3) d2ydx2\frac{d^{2}y}{dx^{2}} = 8dydx\frac{8dy}{dx} – 15 y