Question
Mathematics Question on General and Particular Solutions of a Differential Equation
The differential equation of the family of curves y=e2x(acosx+bsinx), where a and b are arbitrary constants, is given by
A
y2−4y1+5y=0
B
2y2−y1+5y=0
C
y2+4y1−5y=0
D
y2−2y1+5y=0
Answer
y2−4y1+5y=0
Explanation
Solution
Since, y=e2x(acosx+bsinx)
On differentiating w.r.t. x, we get
dxdy=e2x(−asinx+bcosx)
+(acosx+bsinx)2e2x
dxdy=e2x(−asinx+bcosx)+2y
Again differentiating, we get
dx2d2y=e2x(−acosx−bsinx)
+(−asinx+bcosx)e2x⋅2+2dxdy
=−e2x(acosx+bsinx)
+2e2x(−asinx+bcosx)+2dxdy
=−y+2e2x(−asinx+bcosx)+2dxdy
∴y2−4y1+5y
=−y+2dxdy+2e2x(−asinx+bcosx)
−4dxdy+5y
=4y−2dxdy+2e2x(−asinx+bcosx)
=4y−2e2x(−asinx+bcosx)−4y
+2e2x(−asinx+bcosx)
=0
Hence, y2−4y1+5y=0