Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The differential equation of the family of curves y=e2x(acosx+bsinx)y = e^{2x} (a \,\cos\, x + b \,\sin\, x), where aa and bb are arbitrary constants, is given by

A

y24y1+5y=0y_2 - 4 y_1 + 5y =0

B

2y2y1+5y=02y_2 -y_1 +5y =0

C

y2+4y15y=0y_2 +4y_1 -5y = 0

D

y22y1+5y=0y_2 - 2y_1 +5y = 0

Answer

y24y1+5y=0y_2 - 4 y_1 + 5y =0

Explanation

Solution

Since, y=e2x(acosx+bsinx)y=e^{2 x}(a \cos x+b \sin x)
On differentiating w.r.t. xx, we get
dydx=e2x(asinx+bcosx)\frac{d y}{d x}=e^{2 x}(-a \sin x +b \cos x)
+(acosx+bsinx)2e2x+(a \cos x+ b \sin x) 2 e^{2 x}
dydx=e2x(asinx+bcosx)+2y\frac{d y}{d x}=e^{2 x}(-a \sin x +b \cos x)+2 y
Again differentiating, we get
d2ydx2=e2x(acosxbsinx)\frac{d^{2} y}{d x^{2}}= e^{2 x}(-a \cos x-b \sin x)
+(asinx+bcosx)e2x2+2dydx+(-a \sin x +b \cos x) e^{2 x} \cdot 2+2 \frac{d y}{d x}
=e2x(acosx+bsinx)=-e^{2 x}(a \cos x +b \sin x)
+2e2x(asinx+bcosx)+2dydx+2 e^{2 x}(-a \sin x +b \cos x)+2 \frac{d y}{d x}
=y+2e2x(asinx+bcosx)+2dydx=-y +2 e^{2 x}(-a \sin x +b \cos x)+2 \frac{d y}{d x}
y24y1+5y\therefore y_{2}-4 y_{1}+5 y
=y+2dydx+2e2x(asinx+bcosx)=-y+2 \frac{d y}{d x}+2 e^{2 x}(-a \sin x+ b \cos x)
4dydx+5y-4 \frac{d y}{d x}+5 y
=4y2dydx+2e2x(asinx+bcosx)=4 y-2 \frac{d y}{d x}+2 e^{2 x}(-a \sin x +b \cos x)
=4y2e2x(asinx+bcosx)4y=4 y-2 e^{2 x}(-a \sin x +b \cos x)-4 y
+2e2x(asinx+bcosx)+2 e^{2 x}(-a \sin x +b \cos x)
=0=0
Hence, y24y1+5y=0y_{2}-4 y_{1}+5 y=0