Solveeit Logo

Question

Mathematics Question on Differential equations

The differential equation of the family of circles passing through the points (0, 2) and (0, –2) is

A

 2xydydx+(x2y2+4)=0\begin{array}{l}\ 2xy\frac{dy}{dx}+\left(x^2-y^2+4\right)=0 \end{array}

B

 2xydydx+(x2+y24)=0\begin{array}{l} \ 2xy\frac{dy}{dx}+\left(x^2+y^2-4\right)=0\end{array}

C

 2xydydx+(y2x2+4)=0\begin{array}{l} \ 2xy\frac{dy}{dx}+\left(y^2-x^2+4\right)=0\end{array}

D

 2xydydx(x2y2+4)=0\begin{array}{l} \ 2xy\frac{dy}{dx}-\left(x^2-y^2+4\right)=0\end{array}

Answer

 2xydydx+(x2y2+4)=0\begin{array}{l}\ 2xy\frac{dy}{dx}+\left(x^2-y^2+4\right)=0 \end{array}

Explanation

Solution

Let the equation of the family of circles be

x2+y2+2gx+2fy+c=0x^2+y^2+2gx+2fy+c=0

It passes through (a, 0) and (− a, 0). Therefore,

a2+2ag+c=0a^2+2ag+c=0 and a22ag+c=0a^2−2ag+c=0

Solving these two equations, we get c=a2c=−a^2 and g=0g=0

Substituting the values of c and gin (i), we get

x2+y2+2fya2=0x^2+y^2+2fy−a^2=0

It is a one parameter family of circles.

Differentiating with respect to x, we get

2x+2yy1+2fy1=0f=(x+yy1y1)2x+2yy_1+2fy_1=0⇒f=−(\frac{x+yy_1}{y_1})

Substituting the value off in (ii), we get

y1(y2x2+a2)+2xy=0y_1(y^2−x^2+a^2)+2xy=0

This is the required differential equation