Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The differential equation of the family of circles touching yy-axis at the origin is

A

(x2+y2)dydx2xy=0\left(x^{2}+y^{2}\right) \frac{dy}{dx}-2xy = 0

B

(x2y2)+2xydydx=0(x^{2}-y^{2}) +2xy \frac{dy}{dx}= 0

C

(x2y2)dydx2xy=0\left(x^{2}-y^{2}\right) \frac{dy}{dx}-2xy = 0

D

(x2+y2)dydx+2xy=0\left(x^{2}+y^{2}\right) \frac{dy}{dx}+2xy = 0

Answer

(x2y2)+2xydydx=0(x^{2}-y^{2}) +2xy \frac{dy}{dx}= 0

Explanation

Solution

The correct option is(B): (x2y2)+2xydydx=0(x^{2}-y^{2}) +2xy \frac{dy}{dx}= 0.

Let centre of circle on X-axis be (h,0)(h, 0)
The radius of circle will be h

\therefore The equation of circle having centre (h,0)(h, 0) and radiushhis
(xh)2+(y0)2=h2(x-h)^{2} + (y-0)^{2} = h^{2}
x2+h22hx+y2=h2\Rightarrow x^{2}+h^{2}-2hx+y^{2} = h^{2}
x22hx+y2=0(i)\Rightarrow x^{2}-2hx+y^{2}=0 \, \dots(i)
On differentiating both sides w.r.t x, we get
2x2h+2ydydx=02x-2h+2y \frac{dy}{dx}=0
h=x+ydydx\Rightarrow h=x+y \frac{dy}{dx}
On putting h=x+ydydxh = x+y \frac{dy}{dx} in E (i), we get
x22(x+ydydx)x+y2=0x^{2}-2\left(x+y \frac{dy}{dx}\right) x+y^{2}=0
x2+y22xydydx=0\Rightarrow -x^{2}+y^{2}-2xy \frac{dy}{dx}=0
(x2y2)+2xydydx=0\Rightarrow \left(x^{2}-y^{2}\right)+2xy \frac{dy}{dx}=0