Solveeit Logo

Question

Question: The differential equation of family of parabola with foci at the origin and axis along the x axes :...

The differential equation of family of parabola with foci at the origin and axis along the x axes :

A

y(dydx)2\left( \frac{dy}{dx} \right)^{2} + 2xdydx\frac{dy}{dx} – y = 0

B

x(dydx)2\left( \frac{dy}{dx} \right)^{2} + 2ydydx\frac{dy}{dx} – y = 0

C

y(dydx)2\left( \frac{dy}{dx} \right)^{2}+ 2x dydx\frac{dy}{dx} + y = 0

D

None of these

Answer

y(dydx)2\left( \frac{dy}{dx} \right)^{2} + 2xdydx\frac{dy}{dx} – y = 0

Explanation

Solution

Parabola

distance form focus = distance from directrix

x2 + y2 = (2a + x)2

y2 = 4a(a + x) . .........(i)

2ydydx\frac{dy}{dx} = 4a(0 + 1)

a = dydx\frac{dy}{dx}

using (i) y2 = 2y (y2dydx+x)\left( \frac{y}{2}\frac{dy}{dx} + x \right)

y(dydx)2\left( \frac{dy}{dx} \right)^{2} + 2xdydx\frac{dy}{dx}– y = 0