Solveeit Logo

Question

Question: The differential equation of family of curves whose tangent form an angle of *π*/4 with the hyperbol...

The differential equation of family of curves whose tangent form an angle of π/4 with the hyperbola xy=c2xy = c^{2} is

A

dydx=x2+c2x2c2\frac{dy}{dx} = \frac{x^{2} + c^{2}}{x^{2} - c^{2}}

B

dydx=x2c2x2+c2\frac{dy}{dx} = \frac{x^{2} - c^{2}}{x^{2} + c^{2}}

C

dydx=c2x2\frac{dy}{dx} = - \frac{c^{2}}{x^{2}}

D

None of these

Answer

dydx=x2c2x2+c2\frac{dy}{dx} = \frac{x^{2} - c^{2}}{x^{2} + c^{2}}

Explanation

Solution

The slope of the tangent to the family of curves is

m1=dydxm_{1} = \frac{dy}{dx}

Equation of the hyperbola is xy=c2xy = c^{2}y=c2xy = \frac{c^{2}}{x}

dydx=c2x2\frac{dy}{dx} = - \frac{c^{2}}{x^{2}}

∴ Slope of tangent to xy=c2xy = c^{2} is m2=c2x2m_{2} = - \frac{c^{2}}{x^{2}}

Now tanπ4=m1m21+m1m2\tan\frac{\pi}{4} = \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}}1=dydx+c2x21c2x2dydx1 = \frac{\frac{dy}{dx} + \frac{c^{2}}{x^{2}}}{1 - \frac{c^{2}}{x^{2}}\frac{dy}{dx}}

dydx(1+c2x2)=(1c2x2)\frac{dy}{dx}\left( 1 + \frac{c^{2}}{x^{2}} \right) = \left( 1 - \frac{c^{2}}{x^{2}} \right)

dydx=x2c2x2+c2\frac{dy}{dx} = \frac{x^{2} - c^{2}}{x^{2} + c^{2}}