Solveeit Logo

Question

Question: The differential equation of displacement of all "Simple harmonic motions" of given period \(2 \pi /...

The differential equation of displacement of all "Simple harmonic motions" of given period 2π/n2 \pi / n, is

A

d2xdt2+nx=0\frac { d ^ { 2 } x } { d t ^ { 2 } } + n x = 0

B

d2xdt2+n2x=0\frac { d ^ { 2 } x } { d t ^ { 2 } } + n ^ { 2 } x = 0

C

d2xdt2n2x=0\frac { d ^ { 2 } x } { d t ^ { 2 } } - n ^ { 2 } x = 0

D

d2xdt2+1n2x=0\frac { d ^ { 2 } x } { d t ^ { 2 } } + \frac { 1 } { n ^ { 2 } } x = 0

Answer

d2xdt2+n2x=0\frac { d ^ { 2 } x } { d t ^ { 2 } } + n ^ { 2 } x = 0

Explanation

Solution

The displacement of x for all S.H.M. is given by

x=acos(nt+b)x = a \cos ( n t + b )dxdt=nasin(nt+b)\frac { d x } { d t } = - n a \sin ( n t + b )

d2xdt2=n2acos(nt+b)\frac { d ^ { 2 } x } { d t ^ { 2 } } = - n ^ { 2 } a \cos ( n t + b )d2xdt2=n2x\frac { d ^ { 2 } x } { d t ^ { 2 } } = - n ^ { 2 } x

d2xdt2+n2x=0\frac { d ^ { 2 } x } { d t ^ { 2 } } + n ^ { 2 } x = 0.