Solveeit Logo

Question

Question: The differential equation of all the lines in the xy-plane is...

The differential equation of all the lines in the xy-plane is

A

dydxx=0\frac { d y } { d x } - x = 0

B

d2ydx2xdydx=0\frac { d ^ { 2 } y } { d x ^ { 2 } } - x \frac { d y } { d x } = 0

C

d2ydx2=0\frac { d ^ { 2 } y } { d x ^ { 2 } } = 0

D

d2ydx2+x=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + x = 0

Answer

d2ydx2=0\frac { d ^ { 2 } y } { d x ^ { 2 } } = 0

Explanation

Solution

The equation of all the lines in xy-plane is given by y=mx+cy = m x + c

Differentiate it twice w.r.t. x, we get d2ydx2=0\frac { d ^ { 2 } y } { d x ^ { 2 } } = 0 .