Solveeit Logo

Question

Question: The differential equation of all straight lines passing through the origin is...

The differential equation of all straight lines passing through the origin is

A

y=xdydxy = \sqrt { x \frac { d y } { d x } }

B

dydx=y+x\frac { d y } { d x } = y + x

C

dydx=yx\frac { d y } { d x } = \frac { y } { x }

D

None of these

Answer

dydx=yx\frac { d y } { d x } = \frac { y } { x }

Explanation

Solution

The equation of all straight lines passing through the origin is y=mxy = m x .….(i)

Where m is arbitrary constant

Differentiate (i) w.r.t. x, we get

dydx=m\frac { d y } { d x } = mdydx=yx\frac { d y } { d x } = \frac { y } { x } , (By (i)).