Solveeit Logo

Question

Question: The differential equation of all circles which passes through the origin and whose centre lies on y-...

The differential equation of all circles which passes through the origin and whose centre lies on y-axis, is

A

(x2y2)dydx2xy=0\left( x ^ { 2 } - y ^ { 2 } \right) \frac { d y } { d x } - 2 x y = 0

B

(x2y2)dydx+2xy=0\left( x ^ { 2 } - y ^ { 2 } \right) \frac { d y } { d x } + 2 x y = 0

C

(x2y2)dydxxy=0\left( x ^ { 2 } - y ^ { 2 } \right) \frac { d y } { d x } - x y = 0

D

(x2y2)dydx+xy=0\left( x ^ { 2 } - y ^ { 2 } \right) \frac { d y } { d x } + x y = 0

Answer

(x2y2)dydx2xy=0\left( x ^ { 2 } - y ^ { 2 } \right) \frac { d y } { d x } - 2 x y = 0

Explanation

Solution

The system of circles pass through origin and centre lies on y-axis is x2+y22ay=0x ^ { 2 } + y ^ { 2 } - 2 a y = 0

2x+2ydydx2adydx=02 x + 2 y \frac { d y } { d x } - 2 a \frac { d y } { d x } = 02a=2y+2xdxdy2 a = 2 y + 2 x \frac { d x } { d y }

Therefore, the required differential equation is

x2+y22y22xydxdy=0x ^ { 2 } + y ^ { 2 } - 2 y ^ { 2 } - 2 x y \frac { d x } { d y } = 0(x2y2)dydx2xy=0\left( x ^ { 2 } - y ^ { 2 } \right) \frac { d y } { d x } - 2 x y = 0.