Solveeit Logo

Question

Question: The differential equation found by the elimination of the arbitrary constant K from the equation \(...

The differential equation found by the elimination of the arbitrary constant K from the equation y=(x+K)exy = ( x + K ) e ^ { - x } is

A

dydxy=ex\frac { d y } { d x } - y = e ^ { - x }

B

dydxyex=1\frac { d y } { d x } - y e ^ { x } = 1

C

dydx+yex=1\frac { d y } { d x } + y e ^ { x } = 1

D

dydx+y=ex\frac { d y } { d x } + y = e ^ { - x }

Answer

dydx+y=ex\frac { d y } { d x } + y = e ^ { - x }

Explanation

Solution

y=(x+K)exy = ( x + K ) e ^ { - x }dydx=(x+K)ex+ex\frac { d y } { d x } = - ( x + K ) e ^ { - x } + e ^ { - x }

dydx=y+ex\frac { d y } { d x } = - y + e ^ { - x }dydx+y=ex\frac { d y } { d x } + y = e ^ { - x }.