Solveeit Logo

Question

Question: The differential equation for which \(\sin ^ { - 1 } x + \sin ^ { - 1 } y = c\) is given by...

The differential equation for which sin1x+sin1y=c\sin ^ { - 1 } x + \sin ^ { - 1 } y = c is given by

A

1x2dx+1y2dy=0\sqrt { 1 - x ^ { 2 } } d x + \sqrt { 1 - y ^ { 2 } } d y = 0

B

1x2dy+1y2dx=0\sqrt { 1 - x ^ { 2 } } d y + \sqrt { 1 - y ^ { 2 } } d x = 0

C

1x2dy1y2dx=0\sqrt { 1 - x ^ { 2 } } d y - \sqrt { 1 - y ^ { 2 } } d x = 0

D

1x2dx1y2dy=0\sqrt { 1 - x ^ { 2 } } d x - \sqrt { 1 - y ^ { 2 } } d y = 0

Answer

1x2dy+1y2dx=0\sqrt { 1 - x ^ { 2 } } d y + \sqrt { 1 - y ^ { 2 } } d x = 0

Explanation

Solution

Given equation is sin1x+sin1y=c\sin ^ { - 1 } x + \sin ^ { - 1 } y = c .....(i)

On differentiating w.r.t. to x, we get

11x2+11y2dydx=0\frac { 1 } { \sqrt { 1 - x ^ { 2 } } } + \frac { 1 } { \sqrt { 1 - y ^ { 2 } } } \frac { d y } { d x } = 0dydx=1y21x2\frac { d y } { d x } = - \frac { \sqrt { 1 - y ^ { 2 } } } { \sqrt { 1 - x ^ { 2 } } }

1x2dy+1y2dx=0\sqrt { 1 - x ^ { 2 } } d y + \sqrt { 1 - y ^ { 2 } } d x = 0.