Solveeit Logo

Question

Question: The differential equation corresponding to primitive \(y = e ^ { c x }\)is **Or** The elimination ...

The differential equation corresponding to primitive y=ecxy = e ^ { c x }is

Or

The elimination of the arbitrary constant m from the equation y=emxy = e ^ { m x } gives the differential equation

A

dydx=(yx)logx\frac { d y } { d x } = \left( \frac { y } { x } \right) \log x

B

dydx=(xy)logy\frac { d y } { d x } = \left( \frac { x } { y } \right) \log y

C

dydx=(yx)logy\frac { d y } { d x } = \left( \frac { y } { x } \right) \log y

D

dydx=(xy)logx\frac { d y } { d x } = \left( \frac { x } { y } \right) \log x

Answer

dydx=(yx)logy\frac { d y } { d x } = \left( \frac { y } { x } \right) \log y

Explanation

Solution

y=emxy = e ^ { m x }logy=mxm=logyx\log y = m x \Rightarrow m = \frac { \log y } { x }

Now y=emxy = e ^ { m x }dydx=memx=logyxy=(yx)logy\frac { d y } { d x } = m e ^ { m x } = \frac { \log y } { x } \cdot y = \left( \frac { y } { x } \right) \log y