Solveeit Logo

Question

Question: The differential equation (1 + y<sup>2</sup>) + \(\left( x - e ^ { \tan ^ { - 1 } y } \right)\) \(...

The differential equation

(1 + y2) + (xetan1y)\left( x - e ^ { \tan ^ { - 1 } y } \right) dydx\frac{dy}{dx}= 0, has its solution

A

(1 + y2) + (xetan1y)\left( x - e ^ { \tan ^ { - 1 } y } \right) dydx\frac{dy}{dx}= 0, has its solution

B

(x –2) = Ketan1yKe^{\tan^{- 1}y}

C

2xetan1y2xe^{\tan^{- 1}y}= e2tan1ye^{2\tan^{- 1}y}+ K

D

xetan1yxe^{\tan^{- 1}y}= tan–1 y + K

Answer

2xetan1y2xe^{\tan^{- 1}y}= e2tan1ye^{2\tan^{- 1}y}+ K

Explanation

Solution

Try to get dxdy\frac{dx}{dy}+ Px = Q