Solveeit Logo

Question

Question: The differential coefficient of \(\tan^{- 1}\frac{2x}{1 - x^{2}}\) w.r.t. \(\sin^{- 1}\frac{2x}{1 + ...

The differential coefficient of tan12x1x2\tan^{- 1}\frac{2x}{1 - x^{2}} w.r.t. sin12x1+x2\sin^{- 1}\frac{2x}{1 + x^{2}}is

A

1

B

–1

C

0

D

None of these

Answer

1

Explanation

Solution

Let y1=tan12x1x2y_{1} = \tan^{- 1}\frac{2x}{1 - x^{2}} and y2=sin12x1+x2y_{2} = \sin^{- 1}\frac{2x}{1 + x^{2}}

Putting x = tanθ

y1=tan1tan2θ=2θ=2tan1xy_{1} = \tan^{- 1}{\tan 2}\theta = 2\theta = 2\tan^{- 1}x and

y2=sin1sin2θ=2tan1xy_{2} = \sin^{- 1}{\sin 2}\theta = 2\tan^{- 1}x

Again dy1dx=ddx[2tan1x]=21+x2\frac{dy_{1}}{dx} = \frac{d}{dx}\lbrack 2\tan^{- 1}x\rbrack = \frac{2}{1 + x^{2}} ........(i)

and dy2dx=ddx[2tan1x]=21+x2\frac{dy_{2}}{dx} = \frac{d}{dx}\lbrack 2\tan^{- 1}x\rbrack = \frac{2}{1 + x^{2}} ........(ii)

Hence dy1dy2=1\frac{dy_{1}}{dy_{2}} = 1