Solveeit Logo

Question

Question: The differential coefficient of \( \sec \left( {{\tan }^{-1}}x \right) \) is: (a) \( \dfrac{x}{1+{...

The differential coefficient of sec(tan1x)\sec \left( {{\tan }^{-1}}x \right) is:
(a) x1+x2\dfrac{x}{1+{{x}^{2}}}
(b) x1+x2x\sqrt{1+{{x}^{2}}}
(c) 11+x2\dfrac{1}{\sqrt{1+{{x}^{2}}}}
(d) x1+x2\dfrac{x}{\sqrt{1+{{x}^{2}}}}

Explanation

Solution

Hint : Start by finding the derivative of sec(tan1x)\sec \left( {{\tan }^{-1}}x \right) using the chain rule. We know that d(secx)dx=secxtanx\dfrac{d\left( \sec x \right)}{dx}=\sec x\tan x and d(tan1x)dx=11+x2\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}=\dfrac{1}{1+{{x}^{2}}} . Once you get the derivative report the coefficient of sec(tan1x)\sec \left( {{\tan }^{-1}}x \right) as your answer. You may have to use the identity tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x for simplification of your answer.

Complete step-by-step answer :
Let us start with finding the derivative of sec(tan1x)\sec \left( {{\tan }^{-1}}x \right) . For finding the derivative, we will use the chain rule of differentiation. According to the chain rule of differentiation, we know d(f(g(x)))dx=f(g(x))×g(x)\dfrac{d\left( f\left( g(x) \right) \right)}{dx}=f'\left( g(x) \right)\times g'(x) . For sec(tan1x)\sec \left( {{\tan }^{-1}}x \right) , f(x)=secxf\left( x \right)=\sec x and g(x)=tan1xg(x)={{\tan }^{-1}}x .
We also know that d(secx)dx=secxtanx\dfrac{d\left( \sec x \right)}{dx}=\sec x\tan x . .
d(sec(tan1x))dx=sec(tan1x)tan(tan1x)×d(tan1x)dx\therefore \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}
Now, we know that tan1x=11+x2{{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}} . So, if we use this in our equation, we get
d(sec(tan1x))dx=sec(tan1x)tan(tan1x)×11+x2\dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}}
Now, according to the rules of inverse trigonometric function, we know tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x . If we use this in our equation, we get
d(sec(tan1x))dx=sec(tan1x)×x×11+x2\dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times x\times \dfrac{1}{1+{{x}^{2}}}
d(sec(tan1x))dx=sec(tan1x)×x1+x2\Rightarrow \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times \dfrac{x}{1+{{x}^{2}}}
Now, we are asked the differential coefficient of sec(tan1x)\sec \left( {{\tan }^{-1}}x \right) . So, from the above result, we can clearly see that the coefficient of sec(tan1x)\sec \left( {{\tan }^{-1}}x \right) in the derivative of sec(tan1x)\sec \left( {{\tan }^{-1}}x \right) is x1+x2\dfrac{x}{1+{{x}^{2}}} .
So, the correct answer is “Option A”.

Note : The first thing to keep in mind is that according to the rule of trigonometric inverse functions, tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x , but tan1(tanx)=x{{\tan }^{-1}}\left( \tan x \right)=x if and only if it is mentioned that x(π2,π2)x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) . The other thing to keep in mind is while you report the answers, report the exact matched option, as the options given are very similar and misleading.