Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

The differential coefficient of log10x\log_{10} x with respect to logx10\log_{x} 10 is

A

11

B

(log10x)2-(\log_{10} x)^2

C

(logx10)2(\log_{x} 10)^2

D

x2100\frac{x^2}{100}

Answer

(log10x)2-(\log_{10} x)^2

Explanation

Solution

Let u=log10xu=\log _{10} x and v=logx10v=\log _{x} 10
u=logexloge10\Rightarrow u=\frac{\log _{e} x}{\log _{e} 10} and
v=loge10logexv=\frac{\log _{e} 10}{\log _{e} x}
Now, dudx=1xloge10\frac{d u}{d x} =\frac{1}{x \log _{e} 10}
and dvdx=loge10[1x(logex)2]\frac{d v}{d x}=\log _{e} 10\left[\frac{-1}{x\left(\log _{e} x\right)^{2}}\right]
dudv=du/dxdv/dx=1xloge10÷loge10x(logex)2\therefore \frac{d u}{d v}=\frac{d u / d x}{d v / d x}=\frac{1}{x \log _{e} 10} \div \frac{-\log _{e} 10}{x\left(\log _{e} x\right)^{2}}
=(logex)2(loge10)2=(logexloge10)2=\frac{-\left(\log _{e} x\right)^{2}}{\left(\log _{e} 10\right)^{2}}=-\left(\frac{\log _{e} x}{\log _{e} 10}\right)^{2}
=(log10x)2=-\left(\log _{10} x\right)^{2}