Solveeit Logo

Question

Question: The differentiable function y = f(x) has a property that the chord joining any two points \(A=\left(...

The differentiable function y = f(x) has a property that the chord joining any two points A=(x1,f(x1))A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right) and B=(x2,f(x2))B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right) always intersects y axis at (0,2x1x2)\left( 0,2{{x}_{1}}{{x}_{2}} \right) . Given that f(1)=1f\left( 1 \right)=-1 then find 012f(x)=\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)=}
a)16 b)18 c)112 d)124 \begin{aligned} & a)\dfrac{1}{6} \\\ & b)\dfrac{1}{8} \\\ & c)\dfrac{1}{12} \\\ & d)\dfrac{1}{24} \\\ \end{aligned}

Explanation

Solution

Now we are given that chord joining any two points A=(x1,f(x1))A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right) and B=(x2,f(x2))B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right) always intersects y axis at (0,2x1x2)\left( 0,2{{x}_{1}}{{x}_{2}} \right) hence we will write equation of chord joining the points A=(x1,f(x1))A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right) and B=(x2,f(x2))B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right) . Now the chord passes through (0,2x1x2)\left( 0,2{{x}_{1}}{{x}_{2}} \right) . Hence we substitute x = 0 and y = (2x1x2)\left( 2{{x}_{1}}{{x}_{2}} \right) in the equation similarly we know that f(1) = - 1 . hence if we substitute x1=1f(x1)=1{{x}_{1}}=1\Rightarrow f\left( {{x}_{1}} \right)=-1 hence we will get the function f(x). Now since we have f(x) we can easily find the value of 012f(x)\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}

Complete step by step answer:
Now we have that a chord joining any two points A=(x1,f(x1))A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right) and B=(x2,f(x2))B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right) always intersects y axis at (0,2x1x2)\left( 0,2{{x}_{1}}{{x}_{2}} \right).
First let us find the equation of chord.
We know that equation of line passing through point (x1,x2)\left( {{x}_{1}},{{x}_{2}} \right) and (y1,y2)\left( {{y}_{1}},{{y}_{2}} \right) is given by xx1x2x1=yy1y2y1\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}
Hence the equation of chord passing through A=(x1,f(x1))A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right) and B=(x2,f(x2))B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right) is given by
xx1x2x1=yf(x1)f(x2)f(x1)\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}
Now for all point x1,x2{{x}_{1}},{{x}_{2}} we have the chord passes through (0,2x1x2)\left( 0,2{{x}_{1}}{{x}_{2}} \right)
Now substituting x = 0 and y = 2x1x22{{x}_{1}}{{x}_{2}} we get.
x1x2x1=2x1x2f(x1)f(x2)f(x1)\dfrac{-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2{{x}_{1}}{{x}_{2}}-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)} For all point x1,x2{{x}_{1}},{{x}_{2}}
Since the equation is true for all values of x1,x2{{x}_{1}},{{x}_{2}} it is also true for x1=1{{x}_{1}}=1
Now at x1=1{{x}_{1}}=1 we have f(x1)=1f\left( {{x}_{1}} \right)=-1 since at x = 1 then f(x) = -1.
Hence substituting this we get

& \dfrac{-1}{{{x}_{2}}-1}=\dfrac{2{{x}_{2}}-\left( -1 \right)}{f\left( {{x}_{2}} \right)-\left( -1 \right)} \\\ & \Rightarrow \dfrac{-1}{{{x}_{2}}-1}=\dfrac{2{{x}_{2}}+1}{f\left( {{x}_{2}} \right)+1} \\\ \end{aligned}$$ Now cross multiplying the equations we get $$-f\left( {{x}_{2}} \right)-1=\left( 2{{x}_{2}}+1 \right)\left( {{x}_{2}}-1 \right)$$ Now opening the bracket on RHS we get $$\begin{aligned} & -f\left( {{x}_{2}} \right)-1=\left( 2{{x}_{2}}^{2}-2{{x}_{2}}+{{x}_{2}}-1 \right) \\\ & -f\left( {{x}_{2}} \right)=2{{x}_{2}}^{2}-{{x}_{2}} \\\ \end{aligned}$$ Multiplying by – 1 we get $f\left( {{x}_{2}} \right)=-2{{x}_{2}}^{2}+{{x}_{2}}$ Now note that ${{x}_{2}}$ here can be any element since the equation was true for all point ${{x}_{1}},{{x}_{2}}$ Hence we have $f\left( x \right)=-2{{x}^{2}}+x$ Now integrating both side from 0 to $\dfrac{1}{2}$ we get $\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-\int\limits_{0}^{\dfrac{1}{2}}{2{{x}^{2}}}+\int\limits_{0}^{\dfrac{1}{2}}{x}$ $$\begin{aligned} & \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2{{\left[ \dfrac{{{x}^{3}}}{3} \right]}^{\dfrac{1}{2}}}_{0}+{{\left[ \dfrac{{{x}^{2}}}{2} \right]}^{\dfrac{1}{2}}}_{0} \\\ & \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2\left[ \dfrac{{{\left( \dfrac{1}{2} \right)}^{3}}}{3}-0 \right]+\dfrac{{{\left( \dfrac{1}{2} \right)}^{2}}}{2}-0 \\\ \end{aligned}$$ Hence we have $$\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2\left( \dfrac{1}{24} \right)+\dfrac{1}{8}$$ Taking LCM we get $$\begin{aligned} & \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-\dfrac{2}{24}+\dfrac{3}{24} \\\ & \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=\dfrac{1}{24} \\\ \end{aligned}$$ **So, the correct answer is “Option D”.** **Note:** Note that we know nothing about the curve but still for any two points $\left( {{x}_{1}},{{x}_{2}} \right)$ and $\left( f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right) \right)$ we know that the line joining two points is $\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}$ . Hence we can still find the equation of chords and use the conditions. Also it is important to note that we had the chord always intersects y axis at $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$ since it always intersect this is true for all point ${{x}_{1}},{{x}_{2}}$ and not just one particular point.