Solveeit Logo

Question

Question: The different coefficient w.r.t.x of the function (log­<sub>cosx</sub> sinx)(log<sub>sinx</sub>cosx...

The different coefficient w.r.t.x of the function

(log­cosx sinx)(logsinxcosx)–1 + arc sin2x1+x2\frac{2x}{1 + x^{2}} at x = π4\frac{\pi}{4} is–

A

8log2+32π2+16\frac{8}{\log 2} + \frac{32}{\pi^{2} + 16}

B

8log2+32π2+16\frac{8}{\log 2} + \frac{32}{\pi^{2} + 16}

C

8log232π2+16\frac{8}{\log 2} - \frac{32}{\pi^{2} + 16}

D

None of these

Answer

8log2+32π2+16\frac{8}{\log 2} + \frac{32}{\pi^{2} + 16}

Explanation

Solution

y = (logsinxlogcosx)\left( \frac{{logsin}x}{{logcos}x} \right) × (logcosxlogsinx)1\left( \frac{{logcos}x}{{logsin}x} \right)^{- 1} + 2 tan–1 x

y = (logsinxlogcosx)2\left( \frac{{logsin}x}{{logcos}x} \right)^{- 2} + 2 tan–1x

Now

(dydx)x=π4\left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}}= [logcosx×(cotx)+tanx.logsinx(logcosx)2]\left\lbrack \frac{{logcos}x \times (\cot x) + \tan x.{logsin}x}{({logcos}x)^{2}} \right\rbrack+21+x2\frac{2}{1 + x^{2}}

= 8log2\frac{- 8}{\log 2} + 32π2+16\frac{32}{\pi^{2} + 16}