Solveeit Logo

Question

Chemistry Question on Bohr’s Model for Hydrogen Atom

The difference between the radii of nthn^{th} and (n+1)th(n +1)^{th} orbits of hydrogen atom is equal to the radius of (n1)th(n -1)^{th} orbit of hydrogen. The angular momentum of the electron in the nthn^{th} orbit is ________ (hh is Plank�s constant)

A

hπ\frac{h}{\pi}

B

2hπ\frac{2h}{\pi}

C

3hπ\frac{3h}{\pi}

D

4hπ\frac{4h}{\pi}

Answer

2hπ\frac{2h}{\pi}

Explanation

Solution

Radius of nthn^{\text {th}} orbit in an atom,
rn=n2h24π2mZe2r_{n}=\frac{n^{2} h^{2}}{4 \pi^{2} m Z e^{2}}
So, rnn2r_{n} \propto n^{2}
Given in question, difference between radii of (n+1)th (n+1)^{\text {th }} and nth n^{\text {th }} orbit = radius of nth n^{\text {th }} orbit.
(n+1)2n2=(n1)2\Rightarrow (n+1)^{2}-n^{2} =(n-1)^{2}
n24n=0n^{2}-4 n =0 or n=4n=4
According to Bohr's postulate, angular momentum is an integral multiple of h2π\frac{h}{2 \pi}.
So, for 4th 4^{\text {th }} orbit,
L=nh2π=4h2π=2hπL=\frac{n h}{2 \pi}=\frac{4 h}{2 \pi}=\frac{2 h}{\pi}