Solveeit Logo

Question

Question: The difference between the greatest and the least values of the function, \[f\left( x \right)=\sin 2...

The difference between the greatest and the least values of the function, f(x)=sin2xxf\left( x \right)=\sin 2x-x on [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].
A. π\pi
B. 0
C. 32+π3\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{3}
D. 32+2π3-\dfrac{\sqrt{3}}{2}+\dfrac{2\pi }{3}

Explanation

Solution

We will find the greatest and least value of function using the method of differentiation. The differentiation of f(x)f\left( x \right) is denoted as f(x)f'\left( x \right).
The find the value of x for which f(x)=0f'\left( x \right)=0, then the value of f(x)f\left( x \right) at x is either greatest value or least value.

Complete step-by-step answer:

Now, we can see that f(x)f\left( x \right) is given as sin2xx\sin 2x-x on interval [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].
The differentiation of f(x)=sin2xxf\left( x \right)=\sin 2x-x with respect to x is f(x)f'\left( x \right).
f(x)=sin2xxf\left( x \right)=\sin 2x-x ……..(1)
And we know that the differentiation of sin2x=2cos2x\sin 2x=2\cos 2x.
Now, differentiating equation (1) with respect to x,
f(x)=2cos2x1..........(2)\Rightarrow f'\left( x \right)=2\cos 2x-1..........\left( 2 \right)
And to find the value of x for which f(x)f\left( x \right) is greatest or least, we will have to equal the equation (2) to zero i.e.
f(x)=2cos2x1=0 2cos2x=1 cos2x=12 2x=cos112..............(3) \begin{aligned} & f'\left( x \right)=2\cos 2x-1=0 \\\ & \Rightarrow 2\cos 2x=1 \\\ & \Rightarrow \cos 2x=\dfrac{1}{2} \\\ & \Rightarrow 2x={{\cos }^{-1}}\dfrac{1}{2}..............\left( 3 \right) \\\ \end{aligned}
And we know that cos112=π3,π3{{\cos }^{-1}}\dfrac{1}{2}=\dfrac{\pi }{3},-\dfrac{\pi }{3} (as x[π2,π2]x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], so there are only two value of cos112{{\cos }^{-1}}\dfrac{1}{2} which come in this interval).
Now,
2x=π3 & 2x=π3 x=π6 andπ6 \begin{aligned} & \Rightarrow 2x=\dfrac{\pi }{3}\ \And \ 2x=-\dfrac{\pi }{3} \\\ & \Rightarrow x=\dfrac{\pi }{6}\ and-\dfrac{\pi }{6} \\\ \end{aligned}
Now, to find the greatest and least value of f(x)f\left( x \right). First we will have to find the value of f(x)f\left( x \right) at π2,π2,π6,π6-\dfrac{\pi }{2},\dfrac{\pi }{2},\dfrac{\pi }{6},-\dfrac{\pi }{6} (as it is close interval so we will have to check at boundary also).
f(x)=sin2xx f(π2)=0(π2)=π2, (sin(π)=sinπ=0) f(π2)=0π2=π2, f(π6)=sin2(π6)(π6) =sin(π3)+π6 =sinπ3+π6 f(π6)=32+π6...............(4) \begin{aligned} & f\left( x \right)=\sin 2x-x \\\ & \Rightarrow f\left( -\dfrac{\pi }{2} \right)=0-\left( -\dfrac{\pi }{2} \right)=\dfrac{\pi }{2},\ \left( \sin \left( -\pi \right)=-\sin \pi =0 \right) \\\ & f\left( \dfrac{\pi }{2} \right)=0-\dfrac{\pi }{2}=-\dfrac{\pi }{2}, \\\ & f\left( -\dfrac{\pi }{6} \right)=\sin 2\left( -\dfrac{\pi }{6} \right)-\left( -\dfrac{\pi }{6} \right) \\\ & =\sin \left( -\dfrac{\pi }{3} \right)+\dfrac{\pi }{6} \\\ & =-\sin \dfrac{\pi }{3}+\dfrac{\pi }{6} \\\ & f\left( -\dfrac{\pi }{6} \right)=-\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6}...............\left( 4 \right) \\\ \end{aligned}
f(π6)=sin2(π6)π6 =sinπ3π6 f(π6)=32π6............(5) \begin{aligned} & f\left( \dfrac{\pi }{6} \right)=\sin 2\left( \dfrac{\pi }{6} \right)-\dfrac{\pi }{6} \\\ & =\sin \dfrac{\pi }{3}-\dfrac{\pi }{6} \\\ & f\left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}............\left( 5 \right) \\\ \end{aligned}
We can see that,

& \dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}\simeq 0.34\ and\ -\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6}\simeq -0.34 \\\ & \dfrac{\pi }{2}\simeq 1.57 \\\ & -\dfrac{\pi }{2}\simeq -1.57 \\\ \end{aligned}$$ From above, clearly we can see that the greatest value of $f\left( x \right)$ on $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ is $\dfrac{\pi }{2}$ and the least value of $f\left( x \right)$ is $-\dfrac{\pi }{2}$. So, the difference between the greatest and least value of $f\left( x \right)=\dfrac{\pi }{2}-\left( -\dfrac{\pi }{2} \right)$ $\begin{aligned} & =\dfrac{\pi }{2}+\dfrac{\pi }{2} \\\ & =\pi \\\ \end{aligned}$ **Note:** In this question, students can make mistake such as they don’t check the value of $f\left( x \right)$ at boundary and can find the answer as $\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}$ is the greatest and $-\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}$ is the least value and difference between them as, $\begin{aligned} & \dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}-\left( -\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6} \right) \\\ & =\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}+\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6} \\\ & =\sqrt{3}-\dfrac{\pi }{3} \\\ \end{aligned}$ But it is incorrect as the interval is the close interval. So, we have to check the value of $f\left( x \right)$ at boundary.