Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The difference between the greatest and least value of the function, f(x)=sin2xxf(x) = \sin 2x - x on [π2,π2]\left[-\frac{\pi}{2},\frac{\pi}{2}\right] is

A

3+22\frac{\sqrt3+\sqrt2}{2}

B

3+22+π6\frac{\sqrt3+\sqrt2}{2}+\frac{\pi}{6}

C

32+π3\frac{\sqrt3}{2}+\frac{\pi}{3}

D

3+22π3\frac{\sqrt3+\sqrt2}{2}-\frac{\pi}{3}

Answer

32+π3\frac{\sqrt3}{2}+\frac{\pi}{3}

Explanation

Solution

f(x)=2cos2x1f'\left(x\right)=2\,cos\,2x-1 f(x)=0\Rightarrow f'\left(x\right)=0 2cos2x1=0\Rightarrow 2\,cos\,2x-1=0 cos2x=12\Rightarrow cos\,2x=\frac{1}{2} 2x=π3,π3\Rightarrow 2x=\frac{\pi}{3}, - \frac{\pi}{3} x=π6,π6\Rightarrow x=\frac{\pi}{6}, -\frac{\pi}{6} Now, f(π2)=π2f'\left(-\frac{\pi}{2}\right)=\frac{\pi}{2}, f(π2)=π2f'\left(\frac{\pi}{2}\right)=-\frac{\pi}{2} f(π6)=32+π6f'\left(-\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}+\frac{\pi}{6} and f(π6)=32π6f'\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-\frac{\pi}{6} Clearly 32π6\frac{\sqrt{3}}{2}-\frac{\pi}{6} is the greatest value of f(x)f\left(x\right) and its least value =π2=-\frac{\pi}{2}. Hence the reqd. difference =32π6(π2)=32+π3=\frac{\sqrt{3}}{2}-\frac{\pi}{6}-\left(-\frac{\pi}{2}\right)=\frac{\sqrt{3}}{2}+\frac{\pi}{3}